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Abstract

The Oscillatory Shear Index (OSI) metric is used extensively
in cardiovascular flow studies to spatially quantify oscillatory
flow behaviour. In its present form, the OSI is based on the
wall shear stress, which restricts its scope to wall spaces and
limits its relevance to the surrounding flow field. In the present
study, this limitation is addressed with the introduction of the
Oscillatory Flow Index (OFI), which is a unified extension of
the OSI onto flow spaces. Collectively with the Oscillatory Ki-
netic Energy Index (OKEI), the two indices are used to differ-
entiate between oscillatory “flow disturbances” by segregating
direction-reversing modes of oscillation therein. Through as-
sessment of a carotid bifurcation, the new indices are shown to
correlate well with sites of oscillating flow and provide detail of
their local oscillatory behaviour.

Introduction

Rhythmic contractions and relaxations of the heart generate reg-
ular pressure fluctuations that induce flow oscillations within
the cardiovascular system [11]. Near the heart and particularly
within arteries, flow oscillations significantly influence the net-
periodic flow, such that it is said to be locally “disturbed” [9]. To
describe the flow, its period-average is generally coupled with
indices such as the Oscillatory Shear Index (OSI) [6, 7]. The
OSI, which quantifies the oscillatory behaviour of the wall shear
stress (WSS), is an extensively used index. Yet in its present
form, it is by definition restricted to the walls. Herein, this limi-
tation is addressed via extension of the index to the surrounding
flow field, which directly influences its distribution.

A further limitation is expressed by the OSI’s dominant recep-
tivity to direction-reversing oscillatory modes, such that non
direction-reversing modes are poorly recognised [9]. The dis-
tinction between these modes is of importance to the under-
standing of the influence that oscillatory “flow disturbances”
[9] impart on endothelial cell behaviour [2] and mass transport
[8]. As these are integral to atherogenesis, it is found that sites
predisposed to atherosclerosis often coincide with low and os-
cillatory WSS [1, 7]. This correlation is imprecise, particularly
with respect to the role of flow oscillations, yet it is one of the
prevailing theories regarding flow-mediated atherogenesis [10].
In the objective of refining these correlations, the OSI is further
developed to differentiate between oscillatory modes, so that
the role of flow oscillations may be distilled.

Methodology

Blood is a heterogeneous fluid, comprising a suspension of par-
ticulates such as erythrocytes, thrombocytes and leukocytes.

Note on notation: The subscripts i, j are reserved for index notation of Carte-

sian tensors; all other subscripts are for designating variables, and should not be

interpreted as tensor indices. Repeated indices in a term imply Einstein summa-

tion notation. For the generic vector ϕi, the element-wise absolute is designated by

the vector |ϕi| and the Euclidean magnitude (2-norm) by the scalar ‖ϕi‖=
√

ϕiϕi.

Whilst all relevant measurements are generally made at the
macroscale, it is at the microscale level of the particulates
where many significant interactions are expressed [11]. The
explicit resolution of both scales in computational models of
medium-large sized blood vessels is for the present prohibitive.
To bypass this limitation, a continuum hypothesis is gener-
ally assumed for the blood medium, whereby the macroscale
flow is resolved and the microscale modelled. In doing so,
macroscale level properties such as rheology may be satisfac-
torily described via constitutive models [11].

Governing Equations

Blood flow is therefore described by the incompressible mass
and momentum (Navier–Stokes) conservation equations, which
are respectively defined in conservative-form, by:

∂iui = 0 (1)

ρ∂tui +∂ j
(
ρuiu j− τi j + pδi j

)
= 0 (2)

where ui is the blood’s velocity-vector field and ρ its density, p
is its scalar pressure field, and δi j is the Kronecker delta. The
stress tensor τi j = 2µDi j is defined proportional to the strain-
rate (rate of deformation) tensor Di j =

1
2
(
∂iu j +∂ jui

)
, where

viscosity µ(γ̇) is a function of the strain-rate tensor magnitude
γ̇ =

√
2Di jDi j. For the present formulation, blood density is a

constant ρ = 1050
[
kg/m3], and viscosity is strain-rate depen-

dant (non-Newtonian), modelled by the Carreau formulation:

µ(γ̇) = µ∞ +(µ0−µ∞)
[
1+(λγ̇)2

](n−1)/2
(3)

where the parameters are defined λ = 3.313 [s], n = 0.3568,
and the zero and infinite strain limit viscosities are respectively
defined µ0 = 0.056 [kg/m/s] and µ∞ = 0.00345 [kg/m/s] [3].

Geometry

In geometrically regular flow spaces, such as within uniformly
tubular vessel segments, blood flow generally remains “stable”.
However, at sites of geometric irregularities, transient flow dis-
turbances may emerge [4]. Such conditions are found at the
geometric and topologic changes inherent to vascular bifurca-
tions, which lend them to host flow structures that induce flow
disturbances, such as recirculating flow zones [4]. Therefore,
to demonstrate the capability of the introduced indices in mea-
suring oscillatory flow disturbances, the subject geometry of
the present study is an arterial bifurcation, namely of a human
carotid*. A schematic diagram of the geometry is presented in
figure 1, where Ω f denotes the volumetric flow space of the
artery, which is bounded by the wall Γw and inflow/outflow
boundaries of the common (CCA) ΓC, internal (ICA) ΓI and
external (ECA) ΓE carotid arteries. For the present study, the
arterial wall is non-compliant, therefore all field-variables are
processed within a fixed Eulerian reference frame.

*Source: http://grabcad.com/library/carotid-bifurcation

http://grabcad.com/library/carotid-bifurcation
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Figure 1: Schematic of the carotid artery geometry, with mid-
surface Γm and inflow/outflow extensions. Dimensions are
given by the average radius RΓ of inflow/outflow boundaries and
distance between centroids of successive cross-sections. Flow
extension lengths are not to scale.

Boundary Conditions

Uniform outflow conditions of the form uini = Q/
∫

dΓ are as-
signed to boundaries ΓI and ΓE, where ni = ∂iΓ is the unit nor-
mal to the respective boundaries, and the flow-rate Q is transient
and defined at its respective boundary according to the periodic
forms in figure 2. In the present formulation, the flow is solely
driven by a pressure gradient. Therefore, to gauge-fix the pres-
sure field, an arbitrarily chosen Dirichlet boundary condition
p = 0 is applied at boundary ΓC. For the wall boundary Γw, a
no-slip wall condition is assigned, such that ui = 0.
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Figure 2: Periodic flow-rate waveforms applied as boundary
conditions at the ECA and ICA, with the equivalent waveform
at the CCA (not applied); adapted from [5].

As the inflow and outflow boundary conditions are defined uni-
formly on their respective boundaries, they may not locally
resemble an accurate flow field. Therefore, flow extensions
are implemented between the respective boundaries and the
carotid artery geometry (see figure 1), so that flow within the
latter is sufficiently developed and independent of the bound-
ary condition limitations. At the CCA’s inflow boundary, the
equivalent flow profile resolves to a period-averaged Reynolds
number of Re|

ΓC
= 427. Its corresponding velocity magnitude

u0 =
∫

uini dΓC/
∫

dΓC and Poiseuille WSS τw0 = 4µ∞u0/RΓC

will be used as reference values for the flow field.

Oscillatory Flow Decomposition

To characterise the oscillatory nature of the flow, an arbi-
trary scalar field-variable ϕ that is transported within oscil-
latory flow of period-length Tp is considered. Following
Reynolds periodic-decomposition, the period-average ϕ and
time-dependent perturbation ϕ′ components may be realised:

ϕ(t) = ϕ + ϕ
′ (t)

where ϕ =
1
T

∫
T

ϕ(t) dt, t ∈ T
(4)

The integration length is defined T = kTp, where k ≥ 1 is an
integer multiplier. For laminar flow conditions, the integration
may be made over a single period of oscillation (k = 1), since
the flow field is periodic at all relevant length scales. However,

in turbulent flow conditions, a sufficiently large number of pe-
riods (k >> 1) would be required for ϕ to become temporally
invariant. This decomposition is illustrated in the phase portrait
of figure 3, which expresses the ϕi oscillation as a closed loop
about the period-average ϕi. Should the loop be non-singular
(i. e. not a point) and centred about ϕi = 0, it is referred as a pure
oscillation of a direction-reversing (DR) mode. If the loop does
not cross ϕi = 0 axes, it is referred as a non direction-reversing
(NDR) mode. Combinations of these behaviours would be re-
garded as mixed DR/NDR modes.
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Figure 3: Oscillatory phase portrait of ϕi, at an arbitrary point
in a 2-dimensional flow (same principle in 3-dimensions).

Oscillatory Indices

To differentiate between the two modes of oscillation, the Os-
cillatory Index (OI) is used. This measure is a generalisation of
the Oscillatory Shear Index (OSI) [6, 7], and is used to quantify
the oscillatory nature of the flow. Based on the original form of
the OSI [6], the OI of a generic field-variable ϕi is defined:

OI0 {ϕi} =
1
2

(
1−

∥∥ 1
T
∫

T ϕi dt
∥∥

1
T
∫

T ‖ϕi‖ dt

)
(5)

The OSI may be defined as a special case of the OI, such that
OSI ≡ OI{τwi}, where τwi = Θi−

(
Θ jn j

)
ni is the WSS vec-

tor; defined as the wall-tangential decomposition of the trac-
tion stress vector Θi = τi jn j, where ni in this context is the unit
normal vector to the wall boundary Γw. In the same manner,
the Oscillatory Flow Velocity Index (OFVI) may be defined to
characterise the flow field ui, such that OFVI≡ OI{ui}.

The OI measures the oscillatory deviation that ϕi experiences
relative to its period-average. In its original form, it was not de-
signed to differentiate between the modes of oscillation. There-
fore, in the present analysis, a subtle modification is made to the
OI, in favour of exclusively measuring DR oscillations:

OI1 {ϕ} =
1
2

(
1−

∥∥ 1
T
∫

T ϕi dt
∥∥∥∥ 1

T
∫

T |ϕi| dt
∥∥
)

(6)

In both the original and modified form, the OI is defined to take
its minimum limiting value (0) at a non-oscillatory flow, and its
maximum limiting value (0.5) at a pure DR oscillatory mode.
The modified form of the OI is also designed to filter out NDR
oscillatory modes, such that they return a zero value; whereas
in the original form, NDR modes would return near-zero values,
though not exactly zero. This distinction is necessary, as it will
be used to differentiate between the two modes of oscillation.

Another useful measure of flow oscillations is their energy,
which is invariant to the mode of oscillation. By applying
Reynolds periodic-decomposition (equation 4) to an oscillatory
flow field ui, its period-average ui and time-dependent pertur-
bation u′i may be obtained. It follows that the flow’s period-
averaged kinetic energy (per unit mass), may be decomposed
into a dependence on the period-averaged flow κu = 1

2 uiui and
its perturbations κu′ =

1
2 u′iu

′
i respectively. Therefore, to quan-

tify the relevance of oscillatory perturbations within a periodic



flow, the quotient of their respective energies is used; this is
represented by the Oscillatory Kinetic Energy Index:

OKEI = κu′
/
(κu +κu′) (7)

Unification of Oscillatory Indices on Flow and Wall Spaces

By definition, the OKEI and OFVI are restricted to flow spaces,
and the OSI to walls. This presents an inconvenience, as both
flow and wall spaces are assessed in haemodynamic analyses.
To overcome this limitation, the behaviour of these indices at
the flow–wall limit is considered. It is noted, that the WSS at a
point on a wall is proportional to the wall-tangential flow veloc-
ity ut

i at an infinitesimal distance εw, normal to the wall surface:

τwi ∝ lim
εw→0

ut
i
∣∣
εw

εw
(8)

By taking advantage of the indices being expressed as one-to-
one quotients of their respective field-variables, a unification
may be achieved. It follows via equation 8, that the OSI may be
related to the OFVI in the limit near the wall by the relation:

lim
εw→0

OI1
{

ut
i
} ∣∣

εw
= lim

εw→0

1
2

1−

∥∥∥ 1
T
∫

T ut
i
∣∣
εw

dt
∥∥∥∥∥∥ 1

T
∫

T

∣∣∣ut
i

∣∣
εw

∣∣∣ dt
∥∥∥


= lim
εw→0

1
2

1−

∥∥∥ 1
T
∫

T
ut

i |εw
εw

dt
∥∥∥∥∥∥ 1

T
∫

T

∣∣∣ ut
i |εw

εw

∣∣∣ dt
∥∥∥


=
1
2

(
1−

∥∥ 1
T
∫

T τwi dt
∥∥∥∥ 1

T
∫

T |τwi| dt
∥∥
)

= OI1 {τwi}

This relation is only applicable to the wall-tangential compo-
nent of the near-wall flow, and also holds for OI0. As the OFVI
tends to the OSI in the near-wall limit, it follows that a unified
index, the Oscillatory Flow Index (OFI) may be constructed:

OFI =

 OI{ui} on Ω f ∪ ∂Ω f \ Γw

OI{τwi} on Γw

(9)

Following the same generalisation, the OKEI is also extended:

OKEI =


u′iu
′
i

uiui+u′iu
′
i

on Ω f ∪ ∂Ω f \ Γw

τw
′
iτw
′
i

τwiτwi+τw
′
iτw
′
i

on Γw

(10)

Segregating and Measuring DR / NDR Oscillations

The OKEI is a measure of flow oscillations and is indiscriminate
of their mode, whereas the OI1 has been constructed to measure
DR oscillations exclusively. It follows, that the OI1 may be used
to filter out oscillatory modes within the OKEI. This filtering is
constructed for the DR and NDR modes respectively:

OKEIDR = OKEI×OFI1 (11)
OKEINDR = OKEI× (1−2×OFI1) (12)

The range for these indices is the same as that of the OKEI.
Where the lower and upper limits 0 ≤ OKEI ≤ 1 respectively
indicate a non-oscillatory and purely oscillatory flow; a criti-
cal balance between the kinetic energies of the oscillatory and
mean-flow is met at OKEI = 0.5.

Results and Discussion

The system of equations was implemented into the cell-centred
finite-volume solver ANSYS Fluent v16.2, and solved for the
carotid geometry of figure 1, which was discretised with a hy-
brid polyhedral/hexahedral mesh; following successive refine-
ment for mesh independence of the flow field velocity, a final
converged mesh of 1.73×106 elements was used for this study.
The SIMPLE algorithm was used for pressure-velocity cou-
pling, with pressure discretisation using the ‘standard’ scheme
(neighbour-cell interpolation using momentum-equation coeffi-
cient weighting). For momentum (flow) variables, a second-
order upwind discretisation was used, and for field-variable
gradients, a least-squares cell-based interpolation. Temporal
discretisation was made with an implicit first-order forward-
differencing scheme. Computations were made with double-
precision on a 64-bit serial machine. Following successive com-
puted periods P, the fifth period was deemed sufficiently purged
from association with (zero) initial conditions, and used to pro-
cess data on the sixth period; the periodic flow residual criterion
Rū < 10−5 was used to determine this cut-off, where:

Rū
(
mp
)
=

∣∣∣∣∣
[∫

Ω f

‖ui‖ dΩ

/
u0

∫
Ω f

dΩ

]P=mp+1

P=mp

∣∣∣∣∣ (13)

Following numeric convergence, results are post-processed on
mid-surface Γm, cut-planes and the arterial wall Γw, for flow and
wall variables respectively. The flow and WSS field-variables
are displayed in figure 4, and oscillatory flow indices in fig-
ure 5. To demonstrate the significance of the derived indices,
they are related to flow structures observed within the carotid.
Starting at the uniformly tubular CCA, the period-averaged flow
field of figure 4 reveals a stable flow and WSS distribution that
maintains unidirectionality. This is registered by the oscillatory
flow indices (figure 5), which describe a period-average domi-
nated flow (OKEI < 0.5) with a distribution of weak oscillatory
NDR modes. Near the wall, where viscous terms dominate, the
oscillatory influence is greatest and may act to disturb the near-
wall flow and hence the WSS (figure 4), which is an important
parameter in haemodynamics. However, being of weak NDR
modes, the oscillatory influence may not be significant.
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Figure 4: Distribution of (a) normalised velocity vectors, and
dimensionless (b) velocity magnitude and (c) wall shear stress.

As the flow approaches the carotid bifurcation, disturbances
emerge in response to the topologic and geometric changes en-
countered therein. At the entrance of the ICA, the flow separates
at location ς1 and forms a recirculation zone up to ς2, where it
reattaches (refer to the velocity vector plot in figure 4). Within
an oscillatory period, both separating and reattaching flow ex-
perience corresponding oscillations. Physically interpreted, this
implies that the size of the recirculation zone oscillates in re-
sponse to the globally oscillating flow field. This is reflected by
the presence of dominant DR modes at both reattaching and sep-
arating flow sites (figure 5). However, relative to the reattaching
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Figure 5: Distribution of oscillatory flow indices (on mid-surface Γm and the arterial wall Γw; front and back view). Note that both OFI1
and OKEIDR distributions resemble that of OFI0; though OFI1 is an exclusive DR mode measure, and OKEIDR is OKEI-weighted.

flow, the separating flow has a stronger geometric dependence
within the non-compliant artery, and is therefore restricted from
oscillating to a greater extent. Correspondingly, OKEIDR of the
separating flow is lower in magnitude and spatially smaller than
that of the reattaching flow, which has greater oscillatory space.

Though DR oscillatory modes influence the bounds of the recir-
culation zone, NDR modes dominate within the structure and
remain confined to it. This is indicative of an aggregate of os-
cillatory disturbances within the recirculation zone, which due
to the barrier that the recirculating flow structure forms, are not
advected away by the surrounding flow field. Downstream of
the recirculation zone, the flow quickly recovers up to ς3, where
it returns to a relatively unidirectional state up to the ICA outlet,
and OKEI tends to zero. Conversely, the period averaged flow at
the entrance of the ECA (location ς4) also forms a low velocity-
magnitude zone, which remains attached to the wall. The struc-
ture is NDR mode dominated, and unlike the ICA recirculation
zone, it does not form an enclosing environment. The NDR
mode oscillations are therefore free to propagate downstream
into the ECA and disturb the surrounding flow field.

Conclusion

This study presents the Oscillatory Flow Index (OFI) to quantify
“disturbed” oscillatory flow. The index is a unified extension of
the widely used OSI onto flow spaces, such that the latter’s dis-
tribution on wall spaces may be seamlessly related to oscillatory
flow field behaviour. It is demonstrated that oscillatory flows
may be categorized into a spectrum ranging from direction-
reversing (DR) to non direction-reversing (NDR) modes, which
the introduced Oscillatory Kinetic Energy Index (OKEI) collec-
tively measures and the OFI may be used to segregate. These
indices are studied on an anatomically realistic carotid, reveal-
ing a high predisposition of the site of bifurcation to flow dis-
turbances that arise from the geometric variations encountered
therein. The derived indices also reveal that DR modes are most
prominent at sites of separating and reattaching flow, and gener-
ally remain confined to their sources. Whereas NDR modes are
spatially spread and propagate from their source, which may be
of either DR or NDR modes. These outcomes indicate that os-
cillatory flow behaviour varies and can be generalised by segre-
gating its respective modes. It is therefore proposed, that corre-
lations to flow-mediated physiologic responses, such as athero-
genesis, may be refined by segregating oscillatory flow modes.
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