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Abstract 

Steady-state solutions of liquid metal mixed convection in a 
horizontal duct with electrically insulated walls under strong 
magnetic field and horizontal temperature gradient are computed 
by Newton method with finite element discretization through the 
high level integrated software FreeFem++. When a zero 
streamwise pressure gradient is applied, the longitudinal flow 
structure with concentrated jets near the corners of the cross-
section for vertical magnetic field is verified for large Hartmann 
number and large Grashof number. Under both vertical and 
horizontal magnetic field, applied streamwise pressure gradient 
would break up-down symmetry of flow structure (e.g. the 
longitudinal velocity is no longer odd with respect to the vertical 
coordinate) . With the increase of the streamwise pressure 
gradient, the flow struture is changed greatly. The influence of 
the bouyancy force becomes so weak that Hartmann boundary 
layer appears for enough large streamwise pressure gradient. 

Introduction  

The interaction of the moving liquid-metal fluid with a 
magnetic field gives rise to a rich variety of phenomena. On the 
one hand, under a strong magnetic field the mean flow profile 
may create inflexion points (Kakutani 1964), shear layers 
(Lehnert 1952) and jets (Hunt 1965), producing instability of free 
shear flow type. On the other hand, strong magnetic field tends to 
damp three-dimensional perturbations by suppressing the 
variation in the magnetic field direction; the action of strong 
magnetic field would suppress the production of turbulence and 
make the transition from laminar flow to turbulence occur at 
much higher Reynolds number (Shatrov & Gerbeth 2010).  

In currently designed liquid metal (Li or PbLi) blankets for 
future nuclear fusion reactors, mixed (combined natural and 
forced) thermal convections in long duct-shaped conduits under 
strong magnetic field are the main flow scheme (Molokov et al. 
2007, Smolentsev et al. 2008). For such complex mixed 
convections, conventional turbulence is most likely fully 
suppressed by such a strong magnetic field, while great 
temperature gradient along the blanket ducts makes the flow 
more unstable. Some attempts of computational analysis of the 
thermal convection phenomena in configurations corresponding 
to specific designs of fusion reactor blankets have been 
performed by direct numerical simulations (Mas de les Valls et al. 
2011, Mistrangelo & Bühler 2013, Vetcha et al. 2013). These 
time-dependent DNS typically face great obstacles of high 
requirements on numerical resolution, which should be satisfied 
in order to accurately obtain flow features, such as the MHD 
boundary layers.  

In this paper, steady-state liquid metal mixed convection in a 
horizontal duct with electrically insulated walls under strong 
magnetic field and horizontal temperature gradient are 
investigated by Newton method along with finite element 
scheme. Through the numerical computation, all kinds of 
interesting flow structure with different streamwise pressure 
gradient for large Hartmann number and large Grashof number 
are presented and analyzed. 

Physical Model 

The liquid metal is suitably regarded as an incompressible, 
electrically conducting Newtonian viscous fluid with constant 
kinematic viscosity ν and thermal diffusivity κ. A liquid metal 
with a constant electric conductivity σ flows along a horizontal 
rectangular duct subject to a horizontal temperature gradient ▽T 
and an external constant magnetic field B0, as shown in Fig. 1. 
Boussinesq approximation is used for the representation of 
buoyancy force  

!  
Here, β is the thermal expansion coefficient and the subscript 0 is 
denoted as a reference value. The magnetic field B is the sum of 
the applied magnetic field B0 and the induced field b. Since in 
most laboratory experiments the magnetic Reynolds number is 
very small, the magnetic field remains almost unperturbed and 
the induced magnetic field b is then negligible. 

!  

Figure 1. Flow chart of a liquid metal mixed convection in a horizontal 
duct under strong magnetic field and horizontal temperature gradient. 

By assuming a low magnetic Reynolds number, the quasi-
static approximation (Davidson 2001) is used and the governing 
equations can be reduced to the Navier-Stokes system 

!  
Here, v=(u, v, w) denotes the velocity vector, p the pressure, ρ the 
fluid mass density, ν its kinematic viscosity, and volumetric 
buoyancy force f and Lorentz force term j×B0. The induced 
electric current density j is given by Ohm's law: 

!  
Here, φ is the the electric potential. By neglecting displacement 
currents and assuming the fluid to be electrically neutral, it 
follows that the currents are solenoidal, i.e. 

!  
which is Combined with above Ohm's law, an possion equation 
for the electric potential is obtained: 

!  
The balance of the total energy in a volume element leads to a 
convection diffusion equation for temperature T of the form 



!  
Where cp is the specific heat capacity, λ the thermal conductivity, 
j2 the loss of magnetic energy due to Joule dissipation, Φ the loss 
of kinetic energy due to viscous dissipation, and Q other sources 
of volumetric energy release like nuclear radiation or chemical 
reactions. By neglecting all energy dissipation except the Fourier 
diffusion term, the temperature equation is reduced into 

!  
Here, κ is the thermal diffusivity.  
  The boundary conditions at the duct walls are the no-slip 
conditions for velocity  

!  
perfect electric insulation 

!  
and fixed linear temperature distribution 

!  

!  
Table 1. The characteristic scales for different physical quantities. 

The governing equations can be further dimensionalized by the 
characteristic scales for different physical quantities shown in 
Table 1. Then the dimensionless governing equations can be 
written as 

!  
Here, the non-dimensional parameters are the Hartmann number, 
the Grashof number, the Prandtl number and aspect ratio of width 
and height, as follows 

!  
We look for a basic solution whose velocity and potential are 

independent of streamwise coordinate, as follows 

!  
Note here the temperature except linear part is also assumed to be 
independent of streamwise coordinate. The pressure gradient is 
assumed to be a constant, then it is a linear function of 
streamwise coordinate z from the streamwise momentum 
equation,  

!  
from non-streamwise momentum equations we have 

!  
Thus the pressure distribution is given by 

!  
Here, C is the dimensionless pressure gradient along the 
streamwise direction.  
  Substituting these representations for velocity, pressure, 
temperature and potential into the govering equations, we would 
make the basic solution satisfy 

!  

!  

Numerical computations 

When Prandtl number is zero, stream-vorticity equations (can 
be derived easily) are decoupled from the streamwise equation 
due to  

!  
The problem admits a steady solution in which only the 
longitudinal component of the velocity is non-zero, then the 
governing equations and boundary conditions are thus reduced to 
a linear system as follows 

!  
  In the case of a non-zero Prandtl number, the mixed convection 
problem does not admit parallel basic solution and the full non-
linear system of governing equations should be solved 
numerically. Two different methods can be used for the 
computation of the steady-state solutions: either the governing 
equations satisfying the basic solution independent of streamwise 
coordinate are integrated in time until the steady state is reached, 
or the system of stationary equations by assuming the time 
derivatives to be zero are solved by Newton method. Here the 
Taylor-Hood finite element method is used to discretization for 
the basic flow equations, and Newton method is adopted to 
obtain the steady-state solutions by using the basic solution for 
zero-Prandtl number as initial guess. A high level integrated 
software FreeFem++ to solve partial differential equations with 
finite element methods is used for quick realization of the finite 
element discretization and then the calculation of the steady-state 
solutions. Two cases for different directions of the magnetic field 
are considered for different pressure gradient C with the 
parameters Pr=0.1, Gr=10000, Ha=100, l=1 which represent 
enough large temperature gradient and magnetic intensity. 
1. Vertical direction of the magnetic field 
  In case of the vertical magnetic field, the zero pressure gradient 
(C=0) is first considered, while streamlines of the velocity and 
isolines of the longitudinal velocity, temperature and electric 
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potential in the cross-section are plotted in Fig.2. For the zero 
pressure gradient, the average streamwise velocity is zero due to 
its up-down anti-symmetry which can also be deduced from the 
symmetries of steady-state governing equations. From Fig.2, four 
pars of vortical rolls appear along the horizontal direction and the 
longitudinal flow is concentrated in jets near the corners of the 
cross-section whereas the core of the duct is nearly zero flat. 
Upper jets are negative while downside jets are positive. The 
temperature field is also up-down anti-symmetry and the 
maximum value is located at the center of each quarter of the 
cross-section. The large gradient of electric potential is found 
near the corners of the cross-section. Our results for the 
streamlines of velocity and isolines of the temperature are exactly 
the same as those calculated by Lyubimova et al. (JFM 2009).  

! !  
             (a)                    (b) 

! !  
             (c)                    (d) 
Figure 2. Streamlines of the velocity (a) and isolines of the longitudinal 
velocity (b), temperature (c) and electric potential (d) in the cross-section 
for vertical magnetic field with C=0, Pr=0.1, Gr=10000, Ha=100, l=1. 
(solid lines for positive values and dashed lines for negative values)  

With the increase of the streamwise pressure gradient, the up-
down symmetry of flow structure is broken obviously as shown 
in Fig.3. From the figures of streamlines of the velocity, it is 
easily found that two pairs of rolls are combined into two large 
rolls, while the other two pairs of rolls become smaller and 
finally disappear. From isolines of the longitudinal velocity, it can 
be seen that the lower two jet structures extend to the center 
region, and upper two jets become smaller and weaker. When the 
streamwise pressure gradient is large enough (not shown here), 
the flow will be changed into a flug-like structure, and the 
influence of bouyancy force will be so weak that the Hartmann 
boundary layers will appear near the wall vertical to the magnetic 
field. From isolines of the temperature, it can be seen that the 
lower negative temperature distribution becomes a large cell. 
With the increase of the streamwise pressure gradient, the large 
cell extends into upper region will the upper origin structrures 
become smaller and are limited to the region near the corners of 
the cross-section. Again when the streamwise pressure gradient is 
large enough, the negative cell will occupy the whole cross-
section and the positive structures will diappear. 

!  
(a) Streamlines of the velocity (C=-10,-20,-40,-80 from left to right) 

!  

(b) Isolines of the longitudinal velocity (C=-10,-80,-320,-1000 from left 
to right) 

!  
(c) Isolines of the temperature (C=-20,-40,-80,-160 from left to right) 

Figure 3. Evolution of Streamlines of the velocity and isolines of the 
longitudinal velocity and temperature in the cross-section with the 
increase of the streamwise pressure gradient for vertical magnetic field. 
(Pr=0.1, Gr=10000, Ha=100, l=1.) 

2. Horizontal direction of the magnetic field 
In case of the horizontal magnetic field, the zero pressure 

gradient (C=0) is also first considered, and streamlines of the 
velocity and isolines of the longitudinal velocity, temperature and 
electric potential in the cross-section are plotted in Fig.4. It is 
easily seen from the streamlines of the velocity that there exist 
four rolls in the four quarter. The average streamwise velocity is 
zero due to its up-down anti-symmetry of the longitudinal 
velocity which has a counter flow structure. The velocity 
distribution is similar to that of the longitudinal velocity except 
that the negative temperature is located at the lower part. It is also 
found that the isolines of the electric potential are nearly parallel 
to the horizontal direction.  
  Under non-zero streamwise pressure gradient, the up-down 
symmetry is also broken for the horizontal magnetic field as 
shown in Fig.5. It is easily seen that with the increase of the 
streamwise pressure gradient, the lower structures becomes larger 
while the upper structure becomes smaller. Similar to the case of 
vertical magnetic field, when the streamwise pressure gradient is 
large enough, the lower structure will occupy the whole cross-
section. However, this process needs much more streamwise 
pressure gradient compared to the situation of vertical magnetic 
field. 

! !  
             (a)                    (b) 

! !  
             (c)                    (d) 
Figure 4. Streamlines of the velocity (a) and isolines of the longitudinal 
velocity (b), temperature (c) and electric potential (d) in the cross-section 
for horizontal magnetic field with C=0, Pr=0.1, Gr=10000, Ha=100, l=1. 
(solid lines for positive values and dashed lines for negative values) 

!  
(a) Streamlines of the velocity (C=-500,-1000,-2000,-4000 from left to 

right) 



!  
(b) Isolines of the longitudinal velocity (C=-500,-1000,-2000,-4000 from 

left to right) 

!  
(c) Isolines of the temperature (C=-500,-1000,-2000,-4000 from left to 

right) 
Figure 5. Evolution of Streamlines of the velocity and isolines of the 
longitudinal velocity and temperature in the cross-section with the 
increase of the streamwise pressure gradient for horizontal magnetic 
field. (Pr=0.1, Gr=10000, Ha=100, l=1.) 
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