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Abstract

In this paper we present results from stability calculation of
travelling waves of different kinds. All, but one, of these states
appear through saddle-node bifurcations. All these solutions
are linearly unstable and have a low-dimensional unstable man-
ifold. We also present numerical evidence that suggests so-
lutions first identified by [21] exhibit Vortex-Wave Interaction
discovered by [8] for large R.

Introduction

Research on flows in pipes, channels and boundary-layer flows
have attracted many researchers. There has been particular in-
terest in travelling wave (TW) states at large Reynolds number
R in channel ([11], [18], [19], [20], [6], [1]) and pipe geome-
tries ([5], [9], [21], [10], [12], [16]) with different degrees of
symmetry. These states do not arise from finite R bifurcation
of plane Couette or Hagen-Poiseuille flow in a pipe, though
they come increasingly close as R→ ∞. They generally ap-
pear through saddle-node bifurcations with ‘upper’ and ‘lower’
branches. The branch with high wall shear stress ( and therefore
have higher energy) is called ‘upper’ branch, while the branch
with low wall shear stress that corresponds to lower energy dis-
sipation is called the ‘lower’ branch.

In pipe flow, if we use cylindrical coordinates (r,θ,z) with cylin-
der axis aligned along z, and nondimensionalization with do-
main corresponding to r < 1, the nonlinear states are three di-
mensional traveling wave solutions to Navier-Stokes equations
that are of the form

u = vP(r)+U(r,θ)+vw (r,θ,z− ct) (1)

where vP(r) = (1− r2)ẑ is Hagen-Poiseuille flow, U(r,θ) is
streamwise independent part of the flow and vw = (u,v,w) is
2π periodic in both θ and in z̃ := α(z− ct), with zero ax-
ial average over a period, denoted by 〈vw〉 = 0. If we write
U(r,θ) = (U(r,θ),V (r,θ),0)+(0,0,W (r,θ)), the first term con-
tains radial and azimuthal components of streamwise indepen-
dent velocity U(r,θ) which represents streamwise vortices and
is referred to as the roll part of the flow; the latter is termed
the streak and represents streamwise-independent axial veloc-
ity. The last term in (1) represents three dimensional wave part
of the flow.

The amplitudes of the rolls, streaks and waves have to be
just of the right size to sustain this three way interaction be-
tween rolls, streaks and waves. This three way interaction has
been described completely for channel flows asymptotically by
[7] through numerical solutions of the rescaled parameter free
equations, and in agreement found with direct numerical calcu-
lations ([20], [1]) even at moderate R. We refer to these states
as VWI (Vortex-Wave Interaction) states as it is descriptive of
the physical mechanism that sustains such flows, as discovered
originally by [8]. As described by large R asymptotics by [7],
VWI states are characterized by small amplitude linear waves
driving the rolls through Reynolds stress. Another possibility
for travelling waves is the occurrence of a fully nonlinear vis-
cous core (NVC) similar to the one observed earlier in boundary
layer flows by [2]. While NVC states are also characterized by

a three-way interaction mentioned before, there is no meaning-
ful separation in scales between rolls, streaks and waves in this
case, and the interaction between different axial wave number
components is fully nonlinear as R→∞, unlike the VWI states.

In Ozcakir et al.[14], previous numerically calculated states in
pipe geometry were roughly identified as finite R realizations of
a VWI state with an asymptotic structure similar to the ones in
channel flows studied earlier by Hall & Sherwin [7]. There is
also some evidence to suggest that VWI states are edge states
([15]) for large Reynolds number in the sense that they separate
the initial conditions in phase space between those that return
to laminar flow from those that don’t. Furthermore, when the
unstable manifold of these states are low-dimensional, as sug-
gested by earlier numerical calculations ([17]), of one of these
states in pipe geometry, they correspond to exact coherent struc-
tures that are experimentally observable ([9]) in intermediate R
turbulence with the flow moving slowly from one TW state to
another. In the same work, a new class of TW solutions, iden-
tified as NVC states, were found similar to the one observed
earlier in boundary-layer flows by Deguchi & Hall [2]. The
existence and stability of such travelling wave states, and their
connection in phase space play important roles in understanding
both transition and large R behavior of pipe flows. These non-
linear TW states are also of potential technological importance
if suitable controls can be inserted to stabilize a coherent state
with a significantly smaller drag than an uncontrolled turbulent
flow.

The aim of this short paper is to briefly describe already found
([14]) three different class of travelling wave solutions and
present stability properties of them.

Computational Method

The TW solutions we are looking for satisfy the Navier-Stokes

ut +u ·∇u =−∇p+
1
R

∆u , ∇ ·u = 0 (2)

in the form (1).

Our computational method is based on Galerkin truncation in
Fourier-modes in θ and z− ct and a Chebyshev representation
in r similar to [21] which automatically accounts for the bound-
ary condition. Details of numerical methods used in our calcu-
lations can be found in [14].

A similar representation is used for linear stability of equilib-
rium u(r,θ,z− ct) states. We consider perturbations of the
form eλt ũ(r,θ,z − ct) with growth rate λ moving at a rate
c,equilibrium wavespeed. Stability analysis is performed by
solving linearized Navier-Stokes equation (2) for infinitesimal
small perturbation εeλt ũ(r,θ,z− ct) added to the equilibrium
solution. The number of unstable modes a TW has depends
on the space in which the stability analysis was performed. In
theory, one should allow all axial, azimuthal modes on an in-
finitely long pipe; however this is not possible numerically. We
restrict our computations into the space in which solutions re-
side; i.e. ũ(r,θ,z− ct) possesses same symmetries as equilib-
rium solution unless we analyze stability around a bifurcation



point where two equilibrium solutions meet. As in full non-
linear Navier-Stokes problem, we use Galerkin truncation in
Fourier-modes in θ and z−ct and a Chebyshev representation in
r. Linear stability computations are done using direct or newton
solver. Also, higher resolution calculations are performed by
solving linear eigenvalue problem using Newton method with
initial guess chosen from coarser resolution computations.

Numerical Results

Calculations described here are limited to k0 = 2; i.e. two-fold
azimuthally symmetric TW states. We assume TWs have S-
symmetry (shift-and-reflect). In addition, a class of NVC states,
identified as C2 possesses Ω2-symmetry (shift-and-rotate) as
defined in [13]. For k0 = 2, this results in rolls and streaks hav-
ing four-fold azimuthal symmetry.

The first solution we found is called WK state. Note that, in
the previous paper ([14]) we were unable to get numerical con-
vergence for WK solutions for values of R larger than about
11,000 and so agreement with asymptotic scaling results for
VWI-states was only qualitative. Other solutions, C1 and C2,
collapse towards the center of the pipe as R→ ∞. These were
identified as NVC states. Despite localization of rolls and waves
over a shrinking core at the center of the pipe, the streaks do not
decay and remain the same size outside as inside the core, until
wall effects become important.

Figure 1 shows the phase speed c as a function of R for WK,
C1 and C2 solutions at axial-wave speed α = 1.55. In [14], WK
solutions were shown upto R = 11,000 and C1, C2 solutions
were only displayed for the lower-branch since lower branch
asymptotics were investigated. Here, we extend our computa-
tions to WK solutions for larger R and the upper-branch C1-C2
solutions.

In figures 2, 3 and 4 we display roll, streak and wave compo-
nents of these TW states in a plane perpendicular to the pipe axis
at R = 50000 when α = 1.55. In each plot the rolls (U,V,0),
radial and azimuthal waves (u,v,0) are depicted using arrows
whilst the axial velocity intensity of streaks W and axial waves
w are represented in colors where the lighter color corresponds
to positive values of W and w, while darker colors correspond to
negative such values. Axial wave velocity w(r,θ,z0) is shown at
a fixed z0 = 2π/α. It is clear from figure 2b that, most action of
waves are occurring around a small region which is consistent
with VWI theory. On the other hand, roll, wave actions of C1
and C2 solutions are concentrated at the core while streaks are
roughly the same size outside the core.

(a) U(r,θ) (b) vw(r,θ,z0)

Figure 2: (a)Roll (U,V,0), streak (0,0,W ) and (b) (u,v,w) wave
profiles at R = 50000 for WK at α = 1.55. 15 equispaced
contour levels are plotted between minimum and maximum (a)
W (r,θ)and (b) w(r,θ,z0) where min/max taken over (r,θ).

In figure 5 some results on Reynolds stresses S1 and S2 as de-

(a) U(r,θ) (b) vw(r,θ,z0)

Figure 3: (a)Roll (U,V,0), streak (0,0,W ) and (b) (u,v,w) wave
profiles at R = 50000 for C1 at α = 1.55. 15 equispaced con-
tour levels are plotted between minimum and maximum (a)
W (r,θ)and (b) w(r,θ,z0) where min/max taken over (r,θ).
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Figure 4: (a)Roll (U,V,0), streak (0,0,W ) and (b) (u,v,w) wave
profiles at R = 50000 for C2 at α = 1.55. 15 equispaced con-
tour levels are plotted between minimum and maximum (a)
W (r,θ)and (b) w(r,θ,z0) where min/max taken over (r,θ).

fined in [14] are shown. The contours of S2
S2,m

in figure 5a ap-

pear accumulated around the critical curve (where 1− c− r2 +
W (r,θ) = 0) shown in black as expected from VWI states. Fig-
ure 5b shows S j,m := max(r,θ) S j(r,θ) at j = 1,2 against R for
α= 1.55 for WK solutions. Linear fittings(dotted-line) involved
the range 1.2× 104 < R < 5× 104. S1,m, S2,m scale as R−1.58,
not very close to asymptotic scaling R−5/3 of VWI states. How-
ever, it is clear that, as R increases both S2,m and S1,m curves
(solid lines) become steeper suggesting that R is still not large
enough to reach the asymptotic scaling regime.

Stability Analysis

Figure 1 shows results of linear stability analysis around the bi-
furcation points. Note that, even though calculations were car-
ried out upto R = 50000, we display solutions upto R = 14000
since there is no bifurcation detected beyond R = 11000. All
solutions, except C1, appear through saddle-node bifurcations
with ‘upper’ and ‘lower’ branches which are observed when an
eigenvalue passes through the origin. In all cases we found that
there is at least one positive eigenvalues; thus all states are un-
stable from their onset.

As seen in figure 1, WK, C2 solutions are born at about R =
1658 and R = 2300 respectively. When R increases, lower-
branch of WK solution goes through 2 saddle node bifurcations
at around R= 11600 where it makes an inverse S shape when an
unstable real eigenvalue becomes stable, followed by a stability
change of a stable eigenvalue. As a side note, this bifurcation is
important on its own right because WK solution start exhibiting
VWI behaviour with a single dominating axial mode only after
this S-shape bifurcations so we could find numerical evidence
that supports VWI-theory.
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Figure 1: c versus R for WK branch at α = 1.55. It should be noted that definition of ‘upper’ and ‘lower’ branches are switched as
higher wave speed branch has lower energy dissipation. Labels above/below turning points indicate properties of unstable eigenvalues:
number of unstable, real-r or complex-c λs.
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Figure 5: (a) S2 contours at R = 50000 showing 0.9, 0.8,0.7,0.5
and 0.3× S2,m. Critical Curve is shown in black, and location
of S2,m shown in ∗. (b) Scaling of maximal wave stresses S1,m,
S2,m with R at α = 1.55 for WK.

On the other hand, C1 is being created out of C2 through another
bifurcation which can be seen through linear stability analy-
sis of C2 in S-symmetric subspace without imposing additional
shift-and-rotate symmetry. As R increases changes in stability
of C1 is observed as it makes an S shape as seen in figure 1.

Also, we should note that, as you increase R in upper branch
some real eigenvalue pairs will join to form a complex pairs,
though they are not included here since we only focus on sta-
bility around bifurcation points. As a final remark we have re-
cently found new connections on the upper-branch WK solution
around R = 2300 as seen in figure 1. However, stability calcu-
lations are not included here.

Conclusions

In this paper, we report new numerical computations of travel-
ling wave solutions with shift and reflect symmetry through a
numerical continuation process. We present some features of
these solutions, including scaling of the lower-branch WK with
Reynolds number in the range 1.2×104 < R < 5×104. Quanti-
tative evidence roughly suggests numerically calculated lower-
branch WK solution is a finite R realization of VWI states.
However, we need larger R calculations in order to achieve scal-
ings that are consistent with asymptotic stress scaling of R−5/3

in VWI solutions. It is also worth mentioning that other scal-

ings of WK in the same range give good approximations to ex-
pected the R−1 scale for rolls, O(1) scale for streaks and a max-
imal wave amplitude of O(R−5/6) of self sustaining process and
VWI theory described in [8] & [7].

We also discuss linear stability properties of computes travelling
wave solutions near bifurcation points and identify number of
unstable directions. We confirmed that these travelling waves
have slow and low dimensional unstable manifolds suggesting
their relevance to transition in turbulence. It is clear that control
of these state are important matters for further research with
both theoretical and practical implications.
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