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Abstract 

In the present paper, the first and second laws of thermodynamics 

are employed in order to study hydrodynamics along with heat 

and mass transfer of gravity-driven non-Newtonian Ostwald-de-

Waele power law liquid film suspending with nanoparticles along 

an inclined plate. Revised Buongiorno’s model is adopted for 
nanofluid transport on free convection of film flow. The model, 

which includes the effects of Brownian motion and 

thermophoresis, is revised so that the nanofluid particle fraction 

on the boundary is passively rather than actively controlled. 

Boussinesq approximation is considered to account for buoyancy. 

A convective boundary condition is employed which makes this 

study unique and the results are realistic and practically useful. 

The modeled boundary layer conservation equations are 

transformed to dimensionless, coupled and highly non-linear 

system of differential equations, and then solved numerically. 

The numerical results are presented graphically and discussed 

quantitatively for various values of thermo-physical parameters. 

Our results shows that, when the buoyant force on the heated 

fluid adjacent to the surface more than outweighs the 

gravitational force, the lighter fluid tends to raise and a flow 

reversal is observed in the vicinity of the surface. A comparison 

of the present results is made with the earlier published results 

and is found to be in good agreement. 

Keywords: Film flow, Nanofluid, Free Convection, Power-law 

model, Brownian motion, Entropy analysis. 

Introduction  

A falling film is the gravity flow of a continuous liquid film 

down a solid tube having one free surface. Non-Newtonian 

nanofluid behavior is encountered in a great variety of everyday 

life as well as in industrial operations. By far the largest effort 

has been devoted to Newtonian fluid mechanics. Recently, 

modest attention has been devoted to gravity-driven thin film 

flow of the non-Newtonian nanofluids, as compared with its 

Newtonian counterpart. Non-Newtonian transport phenomena 

arise in many branches of chemical and materials processing 

engineering. Such fluids exhibit shear-stress-strain relationships 

which diverge significantly from the Newtonian (Navier-Stokes) 

model. Most non-Newtonian models involve some form of 

modification to the momentum conservation equations. These 

include power law, thixotropic and viscoelastic fluids. Such 

rheological models however cannot simulate the microstructural 

characteristics of many important liquids including polymer 

suspensions, liquid crystal melts, physiological fluids, 

contaminated lubricants etc. 

In the development of energy-efficient heat transfer fluids, the 

thermal conductivity of the heat transfer fluids plays a vital role. 

Despite considerable research and development efforts on heat 

transfer enhancement, major improvements in cooling 

capabilities have been constrained because traditional heat 

transfer fluids used in today’s thermal management systems, such 
as water, oils, and ethylene glycol, have inherently poor thermal 

conductivities, orders-of magnitude smaller than those of most 

solids. A method of improving heat transfer rates is to use solid 

particles in the base fluids. Nanofluids are engineered by 

suspending nanoparticles with average sizes below 100 nm in 

traditional heat transfer fluids such as water, oil, and ethylene 

glycol. Nanofluids (nanoparticle fluid suspensions) is the term 

coined by Choi [5] to describe this new class of nanotechnology-

based heat transfer fluids that exhibit thermal properties superior 

to those of their host fluids or conventional particle fluid 

suspensions. Nanofluids are uniformly stable and suspended in a 

liquid for heat transfer intensification, in industrial sectors 

including power generation, thermal therapy for cancer treatment, 

chemical sectors, ventilation etc. 

A comprehensive survey of convective transport in nanofluids 

was made by Buongiorno [1], who considered seven slip 

mechanisms that can produce a relative velocity between the 

nanoparticles and the base fluid: inertia, Brownian diffusion, 

thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, 

and gravity. Of all of these mechanisms, only Brownian diffusion 

and thermophoresis were found to be important. An analytic 

study on the onset of convection in a horizontal layer of a porous 

medium with the Brinkman model and the Darcy model filled 

with a nanofluid was presented by Kuznetsov and Nield [11]. 

Godson et al. [7] presented the recent experimental and 

theoretical studies on convective heat transfer in nanofluids, their 

thermophysical properties and applications, and clarified the 

challenges and opportunities for future research. Chamkha et al 

[3] analyzed Natural Convective Boundary Layer Flow over a 

Sphere Embedded in a Porous Medium Saturated with a 

Nanofluid. Gorla et al [8] studied the mixed Convection Flow of 

Non-Newtonian fluid from a Slotted Vertical Surface with 

Uniform Surface Heat Flux. Recently, Chamkha et al [4] 

considered the unsteady free convective boundary layer flow of a 
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nanofluid over a vertical cylinder. The model used for the 

nanofluid incorporates the effects of Brownian motion and 

thermophoresis. Ram Reddy [16] considered the effect of Soret 

parameter on mixed convective flow along a vertical plate in a 

nanofluid under convective boundary condition. A clear picture 

about the nanofluid boundary layer flows is still to emerge. 

Recently Nayak [13] studied Soret and Dufour effects on mixed 

convection unsteady MHD boundary layer flow over stretching 

sheet in porous medium with chemically reactive species. On the 

other hand, the impetuous research on convective flow in porous 

media is surveyed in the books by Neild and Bejan [14], Pop and 

Ingham [15] and Incropera and DavidP. Dewitt [6]. As with 

Newtonian nanofluid dynamics, non-Newtonian modelling of 

nanofluid transport phenomena has also attracted significant 
attention very recently. An integral approximate solution for the 

boundary layer equations in the case of a power-law type non-

Newtonian laminar falling film was provided by Murthy and 

Sarma [12]. Heat transfer from an inclined plane to non-

Newtonian fluid falling films was studied both theoretically and 

experimentally by Stucheli and Widmerfl [20]. Gorla and Nee [9] 

analyzed the entrance region heat transfer to a laminar, non-

Newtonian falling liquid film with a fully developed velocity 

profile by perturbation solution. The recent book by Shang [17] 

systematically summarized the research results in free convection 

film flows and heat transfer. The objective of present work is to 

model fluid flow and heat transfer of a laminar non-Newtonian 

falling liquid film filled by a nanofluid. 

Mathematical Model: 

Consider the accelerating laminar flow of a non-Newtonian 

power-law liquid film suspending nanoparticles down along an 

inclined plane surface, as shown schematically in Fig.1. The 

incompressible and inelastic fluid is assumed to obey the 
Ostwald-de-Waele power law model and the action of viscous 

stresses is confined to the developing momentum boundary layer 

adjacent to the solid surface. The non-Newtonian nanofluid 
model incorporates the effects of Brownian motion and 

thermophoresis. It is also assumed that all the fluid properties are 

constant except that of the influence of the density variation with 

temperature and the nanoparticles volume faction in the body 

force term (Boussinesq’s approximation). 

 

The basic conservation equations for mass, momentum, energy 

and nanoparticle volume fraction in non-dimensional form within 

the viscous boundary layer are: 
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  is the fluid density,  is the thermal conductivity,   is the 

viscosity of the fluid, T  and C are the temperature and 

concentration, �� is the density of the base fluid and �� is the 

density of the nanoparticles. ܦ�and ܦ� are the Brownian 

diffusion coefficient and the thermophoresis is diffusion 

coefficient, respectively,  ሺ�ܥሻ� and ሺ�ܥሻ� are the heat capacity 

of the base fluid and the effective heat capacity of the 

nanoparticles material, respectively. is the thermal diffusivity,  

n power law index respectively. The deviation of n from unity 

indicates the degree of deviation from Newtonian rheology and 

the particular case n = 1 represents a Newtonian fluid with 

dynamic coefficient of viscosity K 
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The above equations (1) to (5) can be further non-

dimensionalized using new variables: 
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Where  - tangential coordinate,  - coordinate, ,U V - 

velocities in x and y directions respectively, Re
x
- local Reynolds 

number, ,  - non dimensional temperature and nanofluid 

volume fraction respectively 

Entropy Analysis 

In the nanofluids flows, the improvement of the heat transfer 

properties causes a reduction in entropy generation. However, a 

convection process involving a liquid film flow of nanofluids is 

inherently irreversible. According to Woods, the local volumetric 
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Figure 1: Physical model and coordinate system 



rate of entropy generation (Ns) number in dimensionless form is 

given by: 

     
2

2 1 2nx
s

Br
N U

                         
  (6) 

Where the dimensionless parameters

 
1 1/ 1 1

, ( Re )
,

n n n

x x

x

f

u x
Br

k T T

    







 
,

fT T

T






 

 
,

wC C

C
 






 BD C

k
  are the Brinkman 

number, liquid film height, temperature, nanoparticle volume 

fraction different parameters respectively 

Results and Discussion: 

The nonlinear differential Equations (1) - (4) subject to the 

boundary conditions (5) have been solved numerically by using 

Matlab bvp4c solver for some values of thermophysical 

parameters, and discussed the effects of various physical 

parameters on the velocity, temperature, nanoparticle 

concentration fields and entropy generation. The resulting non-

similarity solutions for the dimensionless velocity, temperature 

and nanofluid volume fraction are displayed in Fig. 2-8. In order 

to assess the accuracy of the numerical solution, we tabulated 

results of dU d and d d    for different values of   when    

n = 0.5, Prx = 10, Nbx = Ntx = Lbx = 0. A comparison of the 

present results with the local non-similarity solution as reported 

by Shang and Anderson [18] shown in Table 1 and urge the 

present results are excellent coincide. Therefore, we believe that 

the comparison supports very well validity of the present results. 

Table1: Comparison of  dU d and d d    for different values 

of   when n = 0.5, Prx = 10, Nbx = Ntx = Lbx = γ = 0. 

  
Shang and Anderson [18] Present Results 

dU d  d d   dU d  d d   

0 1.104406 -1.139345 1.104409 -1.139346 

0.1 1.001948 -1.137857 1.001952 -1.137859 

0.2 0.905206 -1.127787 0.905208 -1.127789 

0.3 0.814695 -1.101675 0.814696 -1.101677 

0.4 0.730722 -1.054052 0.730727 -1.054055 

0.5 0.653416 -0.982272 0.653418 -0.982275 

0.6 0.582748 -0.887155 0.582750 -0.887158 

0.7 0.518561 -0.773095 0.518564 -0.773099 

1.0 0.361926 -0.397539 0.361929 -0.397541 

1.6 0.17416 -0.026229 0.174163 -0.026232 

2.0 0.108331 -0.001286 0.108332 -0.001286 

2.5 0.061694 -0.000007 0.061695 -0.000007 

Here, ( ( )f   is the value of the normalized stream function at 

the outer edge of the boundary layer, and the dimensionless 

boundary layer thickness   is defined as the value of   for 

which the normalized velocity in Fig. 2 becomes equal to 0.99.  

 

Figure 1 Effect of n on velocity distribution 

From Fig 3, we observed that the temperature decreases as n 

increase i.e. the thermal boundary layer become thinner while 

power law index increased. Also the same trend has been 

observed for the nanofluid volume fraction for increase in n.  

 

Figure 2 Effect of n on temperature distribution 

 

Figure 3 Effect of n on nanofluid volume fraction distribution 

Figures 5 and 6 depicts the variation of the effect of the 

convective parameter (γ) on temperature ( ) and nanofluid 

volume fraction ( ). Fig. 5 it is observed that for larger amounts 

of the γ,   is larger and the γ has a thickening effect on the 

thermal boundary-layer. 

 

Figure 4 Effect of γ on temperature distribution 

 

Figure 5 Effect of γ on nanofluid volume fraction distribution 
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Fig 6 show that an increase in the γ leads to a reversal nature for 

the volume fraction in the boundary layer i.e.   decreased near 

the wall (up to 2  ) after that has an increased.  

 

Figure 7 Effect of Prx on temperature distribution 

The effect of the power law index n on the entropy generation 

number is illustrated in Fig. 7. An increase of the n yields higher 

entropy generation number Ns. A decrease in the entropy 

generation produced by fluid friction and joule dissipation occurs 

with increasing the value of the n. 

 

Figure 8 Effect of n on Entropy generation distribution 

Concluding Remarks 

This paper has focused on the heat transfer from an inclined 

plane surface to an accelerating liquid film of a power-law 

nanofluid.  Although the thermal boundary layer equation 

generally fails to permit similarity solutions a novel similarity 

transformation devised by Shang [17] for the accompanying 

hydro-dynamical problem was adopted in combination with a 

local non- similarity solution method due to Keller [10], Sparrow 

et al [19]. The resulting transformed problem turned out to 

involve independent parameters. It is noteworthy that all other 

parameters like the streamwise location x the fluid properties and 

the component of the gravitational acceleration along the wall 

have been combined into Prx and the local Reynolds number Rex. 

Accurate numerical results were obtained for various 

combinations of Parameters. Special treatment of the low and 

high Prandtl number cases was essential in order to maintain the 

numerical accuracy and the results were practically 

indistinguishable from those of Shang [17] for n=1 over the 

entire Prx range. The thickness of the thermal boundary layer 

decreases monotonically with increasing Prx. The thermal 

boundary layer extends far out in the free stream for 1xPr   and 

is on the other hand confined to the innermost part of the 

momentum boundary layer for 1xPr  . With an increase of γ, the 

temperature rises and the nanofluid concentration reduces near 

the wall due to the nanoparticle. 
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