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Abstract

The dynamics of a cantilevered elastic sheet, with a uniform
steady flow impinging on its clamped-end, have been studied
widely and provide insight into the stability of flags and bio-
logical phenomena. Recent measurements by Kim et al. J.
Fluid Mech. 736, R1 (2013) show that reversing the sheet’s
orientation, with the flow impinging on its free-edge, dramati-
cally alters its dynamics. In contrast to the conventional flag,
which exhibits (small-amplitude) flutter above a critical flow
speed, the inverted-flag displays large-amplitude flapping over
a finite band of flow speeds. In this talk, we use a combi-
nation of mathematical theory, scaling analysis and measure-
ment to establish that this large-amplitude flapping motion is
a vortex-induced vibration. Onset of flapping is shown mathe-
matically to be due to divergence instability, verifying previous
speculation based on a two-point measurement. Reducing the
sheet’s aspect ratio (height/length) increases the critical flow
speed for divergence and ultimately eliminates flapping. The
flapping motion is associated with a separated flow – detailed
measurements and scaling analysis show that it exhibits the re-
quired features of a vortex-induced vibration. Flapping is found
to be periodic predominantly, with a transition to chaos as flow
speed increases. Cessation of flapping occurs at higher speeds
– increasing damping reduces the flow speed range where flap-
ping is observed, as required. These findings have implications
to leaf motion and other biological processes, such as the dy-
namics of individual hairs, because they also can present an
inverted-flag configuration.

Introduction

The stability of a cantilevered thin elastic sheet immersed in a
steady uniform flow has received widespread attention due to its
relevance in many applications, ranging from the aerodynamics
of flight to understanding the basic dynamics of flag motion.
The predominant configuration studied to date is that where the
flow (i) impinges on the sheet’s clamped end, and (ii) is paral-
lel to the sheet; mimicking the orientation often encountered by
flags and biological structures that naturally position themselves
in the flow direction. This configuration will henceforth be re-
ferred to as the “conventional-flag” problem; as opposed to the
“inverted-flag” reported by [6] which is the focus of this study.
Shelley and Zhang [14] review the extensive body of literature
on the conventional-flag problem. While this problem has been
studied widely over the past century, the effects of orientation
on the resulting sheet dynamics have received comparatively lit-
tle attention.

Recent measurements by Kim et al. [6] show that reversing the
orientation of a cantilevered thin elastic sheet, as per Fig. 1, with
its length parallel to a steady uniform flow at high Reynolds
numbers (Re ≡UL/ν ≈ 104 – 105), can dramatically alter the
sheet’s stability and resulting dynamics; U is the flow speed,
L the sheet length, and ν the fluid’s kinematic viscosity. The
physical mechanisms underlying the observed behaviour of this
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Figure 1: Schematic illustration of the measurement apparatus
used to investigate the stability and dynamics of an inverted-flag
in a uniform steady air flow. Sheet length, L, is shown and its
height, H, is perpendicular to the flow (not shown).

inverted-flag remain unknown. The aim of this study is to shed
light on these mechanisms and thus provide insight into the ef-
fects of flow orientation on a cantilevered elastic sheet’s dynam-
ics. We are not so much interested in modelling the complete
flow, which in principle can be done using fully numerical or
semi-analytical approaches developed previously, but using the
most fundamental theoretical and experimental tools to extract
the essential physics of the inverted-flag phenomenon. Indeed,
while recent computational studies [5, 15, 11] were able to re-
produce the phenomena observed experimentally, the dominant
physical mechanisms were not described.

Measurements as a function of the sheet’s aspect ratio

Figure 2 presents stroboscopic measurements of the inverted-
flag’s motion, as a function of sheet height (and thus aspect
ratio) and air flow speed; the dimensionless flow speed κ is
described below and defined in Eq. (1). These provide a di-
rect extension of the measurements reported previously [6]. As
described by Kim et al. [6], increasing the flow speed causes
the sheet to move from a stable undeformed equilibrium to
large-amplitude flapping. This occurs abruptly at a critical flow
speed, Ulower. When the flow speed is increased further, a sec-
ond abrupt transition occurs at Uupper where large-amplitude
flapping ceases and a steady deflection is recovered, at large-
amplitude; a small amount of flutter is also observed in this de-
flected equilibrium.

These measurements, at constant sheet length, show that the
sheet dynamics are strongly affected by the sheet’s height, and
thus its aspect ratio, with Ulower increasing with decreasing as-
pect ratio. In contrast, Uupper appears to be insensitive to the
sheet’s aspect ratio. This establishes that the sheet geometry can
dramatically affect its dynamics, with flapping appearing only
if the sheet’s aspect ratio exceeds a critical value. For smaller
aspect ratios, a direct transition to a stable deflected equilibrium
occurs.
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Figure 2: Stroboscopic images of the sheet motion as a function
of sheet height and air flow speed, for sheet of length L = 30
cm. Dimensionless flow speed, κ, and sheet aspect ratio, H/L,
are also indicated. Stable equilibrium states are observed at low
(red) and high (blue) flow speeds, whereas large-amplitude flap-
ping occurs at intermediate flow speeds (green). Flow direction
is left-to-right, and the sheet is clamped at its right-hand end.

These results differ from those of a conventional-flag, which
is always unstable above a critical flow speed [9, 14]. But
the measurements in Fig. 2 are consistent with the findings of
Rinaldi and Paidoussis [10], who considered the inverted-rod
problem, i.e., a slender (cylindrical cross-section) elastic rod
of small aspect ratio, which also did not display flapping be-
haviour. We now examine the physical mechanisms underlying
the behaviour observed in Fig. 2.

Stability at low flow speed

To begin, we investigate the onset of flapping at low flow speed,
i.e., at Ulower. To theoretically explore the physical mechanisms
driving Ulower, we draw on the study of Kornecki et al. [8].
As noted in Ref. [12], Argentina and Mahadevan [2] presented
an analysis similar to that of Kornecki et al. [8], though this
similarity has not been discussed in the literature previously.

To explore the sheet’s stability at low flow speed, we initially
study the limiting case of infinite aspect ratio, H/L; where
H and L are the sheet height and length, respectively; see
Fig. 1. This two-dimensional problem is relevant to understand-
ing the practical case where the sheet’s height greatly exceeds
its length; see Fig. 1.

Kornecki et al. [8] and others (see Ref. [14] for a review) have
shown that the stability of a conventional-flag depends on two
parameters:

κ≡ ρU2L3

D
, µ≡ ρL

ρsh
, (1)

where κ specifies the ratio of hydrodynamic to elastic restor-
ing forces (henceforth referred to as the “dimensionless flow
speed”, for simplicity), and µ is the relative importance of fluid-
to-solid inertia (termed the “added mass parameter”); ρ is the
fluid density, ρs is the sheet density, U is the flow speed, h
is the sheet thickness, and the sheet flexural rigidity is D ≡
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Figure 3: Stability of the zero-deflection equilibrium, for (a)
an inverted-flag and (b) a conventional-flag. Dimensionless fre-
quency, Ω [Eq. (2)] vs dimensionless flow speed, κ are shown.
A nonzero imaginary component indicates an unstable equilib-
rium.

Eh3/(12[1−ν2]) where E and ν are the Young’s modulus and
Poisson’s ratio of the sheet.

While Ref. [8] used both steady and unsteady thin airfoil theory
to account for the hydrodynamic load, we utilise the steady the-
ory only here. This allows us to determine when steady and un-
steady hydrodynamic processes are involved, while not unduly
complicating the analysis [12]. Note that (unsteady) inertia in
the solid sheet is included fully in both formulations.

The steady theory of Ref. [8] yields the following integrodiffer-
ential equation:

d4w
dx4 −Ω

2w+2κ
f (θ)− f (0)

sinθ
= 0, (2)

where w is the sheet deflection, x the normalised Cartesian co-
ordinate in the free-stream direction (scaled by the sheet length
L), and the dimensionless frequency is defined

Ω≡ ω

√
ρshL4

D
, (3)

where ω is the angular frequency of the sheet’s motion, and

f (θ) =
1
π

∫
π

0
w′(ζ)

sin2
φ

cosφ− cosθ
dφ, (4)

where x = (1/2)(1+cosθ), ζ = (1/2)(1+cosφ), with x∈ [0,1]
and θ,φ ∈ [0,π]; all other parameters are defined above.

Figure 3 shows the calculated (complex) frequencies, Ω, for
both the conventional- and inverted-flag problems, as a function
of the dimensionless flow speed, κ. Emergence of a nonzero
imaginary component defines the onset of an instability (bi-
furcation). While results for the conventional- and inverted-
flags exhibit some obvious similarities, the striking difference
is that the conventional-flag problem [Fig. 3(b)] bifurcates at
nonzero frequency (see real part, at κ = 15.9), whereas sta-
bility of the inverted-flag [Fig. 3(a)] is lost at zero frequency
when κ = 1.85. This analysis shows that, as the flow speed in-
creases, the inverted-flag of infinite aspect ratio becomes unsta-
ble at κ = 1.85 due to the steady hydrodynamic lift-force bal-
ancing the elastic restoring force of the sheet – higher speeds
cause it to deflect from its zero-deflection equilibrium position.
The inverted-flag therefore exhibits a divergence instability [9].
The effect of this deflection on the sheet’s subsequent dynamics
is explored below.
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Figure 4: Bifurcation point of the zero-deflection equilibrium
of an inverted-flag, showing the critical dimensionless flow
speed, κlower, as a function of aspect ratio, H/L. Compari-
son of measurements in air [red dots] using sheets of length
5.1 and 30 cm, with the large aspect ratio (H/L ≥ 1) formula
Eq. (5) [solid black line]. The asymptotic limit H/L→ ∞ is
indicated [dashed-dotted black line]. The (extrapolated) predic-
tion of Eq. (5) is also shown for H/L < 1 [dashed black line];
this lies outside its range of validity and is given for reference
only.

Because the bifurcation point of the zero deflection equilibrium
is due to a steady fluid process, we can calculate the effect of
finite aspect ratio, H/L, using Prandtl’s lifting line theory,

κlower ≡ ρU2
lowerL

3/D≈ 1.85
(

1+
2L
H

)
, (5)

which is expected to hold for large aspect ratios, H/L [12]. This
equation predicts that the critical wind speed, Ulower, where the
zero deflection equilibrium loses stability, increases as the sheet
height decreases (at fixed length) – as observed in measure-
ments; see Fig. 2.

Comparison of Eq. (5) to measurements is given in Fig. 4. Good
agreement is found for large aspect ratios H/L > 1, with no ad-
justable parameters. This shows that the presented inviscid the-
ory accurately captures the instability in these cases. However,
Eq. (5) overestimates the measured value of κlower for small as-
pect ratio, H/L < 1, where there appears to be an inflection in
curvature. It is known that the sides of a wing generate vortices
that can become trapped by the airflow and increase lift; the so-
called ‘vortex-lift’ phenomenon [1]. Because this occurs at the
sides, its effect on the overall lift will increase with decreasing
aspect ratio, consistent with the discrepancy in Fig. 4.

Flapping region

We turn our attention to the flapping phenomenon observed for
κ > κlower. At these wind speeds, the zero deflection equi-
librium is linearly unstable and the sheet spontaneously de-
flects. As the angle-of-attack of the sheet increases, the small-
amplitude lifting flow [in Eq. (2)] separates [13]. Such flows
are highly unsteady for the Reynolds numbers studied and ex-
hibit periodic vortex shedding [13, 7, 16, 4]. Flow visualisation
shows that sheet flapping is accompanied by synchronisation of
periodic vortex shedding at the deflection maxima [6]. Such a
fluid-structure interaction has been observed previously in the
vortex-induced vibration of elastic cylinders [16, 4], which oc-
curs by synchronisation of the vortex shedding frequency with
the natural resonant frequency of the cylinder (in fluid).

Figure 5A gives the frequency at which the sheet oscillates in
the flapping band, i.e., for κ > κlower. This shows that the fre-
quency varies slightly but is significantly lower than the natural
resonant frequency of the sheet with no flow. Such reduced fre-
quency is expected because the fluid loading is strong (µ≈ 0.38)
and the impinging flow exerts a position dependent inertial load
on the moving sheet under large-amplitude flapping. The max-
imum flapping frequency, fres ≈ 8 Hz, at κ ≈ 6 coincides with
the sheet exhibiting a maximum deflection oriented 90◦ to the
wind direction. We note that constancy in the frequency of a
vortex-induced vibration is only expected for light fluid load-
ing, i.e., µ� 1 [16, 4]. Both sheets violate this requirement –
variation of the flapping frequency with wind speed is expected
and observed.
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Figure 5: Flapping band dynamics for sheet: L = 5.1 cm &
H = 6.4 cm. (A) Dominant flapping frequency, fres, i.e., fre-
quency with largest amplitude. (B) Associated Strouhal num-
ber. Error bars are smaller than symbols in A. (C) Time series
of y-coordinate of sheet free end for κ = 13.36. (D) Green and
red time segments in C are overlaid.

The Strouhal number is defined, St ≡ fresA/U . Here, A is the
maximum vertical amplitude of flapping (peak-to-peak) to ac-
count for the deformable geometry of the flapping sheet and
allow for comparison to previous studies on cylinders. Im-
portantly, the Strouhal number, St, is related to κ: A/L ≈
2St
√

κ
√

1+1/µ; effective mass enhancement of the sheet due
to the fluid is approximated by the factor: 1 + µ. An upper
bound for A/L is given by geometry. Periodic vortex shedding
is required for a vortex-induced vibration, but occurs only above
a critical sheet deflection. Assuming the value for a flat rigid
sheet [7] applies here, gives the lower bound: A/L|min ≈ 1/3.
We then obtain the required κ-region within which a vortex-
induced vibration (VIV) can emerge:

µ
1+µ

< κ <
100µ
1+µ

. (6)

Values of κ outside this range require amplitudes that are ei-
ther not possible geometrically (above the upper limit of this
inequality), or do not allow the inverted-flag to exhibit periodic
vortex shedding (below the lower limit).

The added mass parameter for the inverted-flags studied in
Fig. 2 (in air) is µ = 0.38, and thus Eq. (6) becomes

0.3 < κ < 30. (7)



Comparing this inequality with Eq. (5) (and the data in Fig. 4)
shows that κlower lies within the required flow speed range
where a VIV can exist. This finding also holds true for inverted-
flags immersed in water, corresponding to µ� 1. We therefore
conclude that a VIV can indeed be launched at κlower, for the
measurements presented.

Figure 5B gives the Strouhal numbers in the flapping band.
These are quantitatively similar to those reported previously [6]
for a sheet six times longer in length, with very different vortex
shedding frequencies. The Reynolds numbers in Ref. [6] are
correspondingly six times larger, and thus the measurements
in Fig. 5B probe a different flow regime. Strikingly, flapping
begins at a Strouhal number of approximately 0.15 and de-
creases with increasing κ until flapping ceases – such behaviour
and values are typical for vortex-induced vibrations [7, 16, 4].
This similitude, the weak dependence of Strouhal number on
Reynolds number, the weak variation in flapping frequency, the
supression of flapping with enhanced damping (not shown here)
[12], and the fact that κlower lies within the range specified by
Eq. (6), provide strong evidence that motion in the flapping
band is a vortex-induced vibration [16, 4].

Sinusoidal motion is observed in the flapping band for low wind
speeds 4.25 < κ < 11.4. For higher values, 11.4 < κ < 13.4,
aperiodic motion emerges and intensifies with increasing wind
speed – a sensitive dependence on initial conditions exists at the
highest wind speed; see Fig. 5C-D. This establishes that the flag
undergoes chaotic dynamics immediately prior to the abrupt
emergence of a stable large-amplitude equilibrium at high wind
speed; indicative of a nonlinear dynamical system, which is re-
quired for vortex-induced vibrations [16, 4]. The properties of
the inverted-flag’s chaotic motion, and its relation to chaos ob-
served for a conventional-flag [3], presents an interesting area
for further investigation.

Conclusions

We have examined the physical mechanisms underlying the ex-
perimentally observed dynamics of an inverted-flag flapping in
a uniform steady flow [6]. This was performed using a com-
bination of theory, scaling analysis and experimental measure-
ment; flow around the inverted-flag occurs in the high Reynolds
regime (Re≈ 104−105).

Theoretical analysis of the zero-deflection equilibrium’s stabil-
ity shows that it exhibits a divergence bifurcation at low flow
speeds. Measurements show that a reduction in the inverted-
flag’s aspect ratio (height/length) increases the critical flow
speed where its zero-deflection equilibrium loses stability – a
feature that is accurately predicted by the theory which is de-
rived for aspect ratios greater than one. A strong deviation be-
tween the extrapolated predictions of this theory and measure-
ment is observed for smaller aspect ratios, which is consistent
with the presence of a vortex-lift phenomenon.

Measurements and analysis of the flapping region provide
strong support for the hypothesis that flapping is a vortex-
induced vibration. This indicates that flapping will not occur for
small scale structures, which naturally exhibit small Reynolds
numbers. This is borne out in the computational simulations of
Ref. [11] at low Reynolds number (Re < 50). Interestingly, this
is precisely the regime where cylinders do not exhibit periodic
vortex-shedding, a prerequisite for vortex-induced vibrations.
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