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Abstract 

This study presents a preliminary analysis of atherosclerotic 

plaque growth as influenced by mural infiltration of low density 

lipoprotein (LDL). A computational model is developed to 

simulate physiological physics on a simplified two-dimensional 

bifurcating arterial geometry, comprising of a luminal volume 

and a wall modelled via boundary conditions. Dynamic blood 

flow is modelled with the incompressible Navier–Stokes 

equations and mass transport of LDL via passive scalar transport 

equations. Wall growth is modelled with explicit Lagrangian 

mesh motion. The modelling approach adopted in this study 

focuses on obtaining an estimate of the emergence and 

subsequent growth behaviour of atherosclerosis. For the purpose 

of accelerating growth, mass conservation in the growing lesion 

is not monitored, and in doing so, the model is made independent 

of a temporal scale. The purpose of this study is therefore not to 

obtain precise behaviour of the growing lesion, but rather an 

estimate at a reducing computational effort. The model is tested 

on a sample geometry and shown to provide a satisfactory 

estimate of the emergence and behaviour of atherosclerotic 

lesions. The findings of this study are expected to contribute to 

the development of more sophisticated atherosclerosis growth 

models which will give insight into the nature and growth 

behaviour of the disease. 

Introduction 

Atherosclerosis is a degenerative disease of arterial walls. It is 

characterized by the development of a protruding lesion, rich in 

lipids, macrophages and smooth muscle cells. Over time, 

progressive mass transport of lipoproteins, macrophages and 

smooth muscle cells, amongst other factors, contribute to the 

volumetric increase of the lesion, manifesting itself as a growing 

obstruction to the normal arterial blood flow. If left unchecked, 

the growing lesion may cause a significant pressure drop on the 

blood flow. In such a situation, the affected section of the artery 

becomes inefficient in transporting nutrient-carrying blood. If the 

pressure drop is substantially high, poor supply of oxygen to 

starved tissue downstream of the lesion may cause infarction. 

Alternatively, if the lesion significantly imposes on the blood 

flow, then elevated wall shear stress on its surface may cause 

shearing of the lesion’s cap, leading to a local thrombus or the 

occlusion of a downstream artery. Both these outcomes will also 

effectively lead to ischemia of downstream tissue. If the site of 

infarction is significant, then the outcome may be manifest in a 

life-threatening disease such as stroke or myocardial infarction 

[7, 14, 18]. 

To better understand the behaviour of the disease, various 

mathematical models were developed by researchers to describe 

different aspects of atherosclerosis. An important characteristic 

that has of recently come under significant study, is the 

development of a model to capture the growth behaviour of the 

disease. Since growth is a multifaceted phenomenon, involving 

multiple co-dependent processes, such a model would require the 

integration of many other sub-models to collectively describe 

growth of the atherosclerotic lesion. To date, such models have 

included the transport and interaction of macromolecules and 

biological agents such as low density lipoproteins (LDL), 

oxidised LDL, cytokines, monocytes, macrophages, foam cells 

and smooth muscle cells, amongst others [2, 5, 6, 9, 10, 17]. 

These types of models considered atherosclerosis growth to be 

driven by mass transport mechanisms. Other models have 

attempted to define growth by purely mechanistic processes, as 

driven by arterial surface stresses defined by variations in the 

surrounding flow field [4, 13, 15]. This study is based on the 

former modelling approach, where growth is modelled as driven 

by mass transport. However, a relatively simplistic methodology 

is employed; unlike most approaches, this study does not model 

an arterial wall as a separate domain to that of blood flow. In 

doing so, no closure equations can be provided to quantitatively 

relate mass transport with growth. Consequently, growth cannot 

be related to a time scale. However, as this study only aims at 

investigating the spatial correlations of growth, then a temporal 

relation is unnecessary and so the simplifications employed are 

satisfactory within the scope of this study. 

Model Setup 

Geometry 

A simplified bifurcating arterial geometry is selected for this 

study. Such a geometry presents intrinsic variations in cross-

sectional area and in the direction of the arterial span. The 

combined effects of these two features on the bulk flow within 

the artery, causes for the formation of distinct sites with 

variations in wall-shear stress. 

 

Figure 1. Outline view of a generic bifurcating artery. Shaded regions at 

the opposing flanks of the bifurcation are characteristic sites of oscillatory 

wall shear stress which promote the development of atherosclerosis. 

In reference to figure 1, this study assumes a symmetric 

bifurcation (about the mid-plane parallel to the x-z plane). 

Furthermore, to restrict the study to two-dimensional flows, 

channel flow behaviour is assumed at the mid-plane (x-y plane) 

of the bifurcation. However, to enforce arterial-flow conditions, a 

Poiseuille boundary condition is assigned at the inlet (this is 



discussed later). Additionally, to ensure the region of interest is 

minimally affected by the inlet and outlet boundary conditions, 

flow extensions are included both upstream and downstream. The 

resulting geometry takes the form given in figure 2. 

 

Figure 2. Geometry of computational domain of interest (shaded region) 

with flow extensions added; units in [mm]. 

Governing Equations 

Blood flow within the arterial lumen, is described by the steady-

state incompressible mass and momentum (Navier–Stokes) 

conservation equations respectively: 

∇ ⋅ 𝒖 = 0 (1) 

𝜌(𝒖 ⋅ ∇)𝒖 − 𝜇∇2𝒖 + ∇𝑝 = 0 (2) 

Where 𝒖 and 𝑝 are the velocity and pressure fields respectively. 

Blood is assumed to be a homogenous isotropic fluid with 

density given by 𝜌 = 1050 𝑘𝑔/𝑚3 and viscosity by the 

Newtonian approximation of 𝜇 = 3.05 × 10−3 𝑘𝑔/𝑚/𝑠. The 

assumption that blood can be characterized by a constant 

viscosity is well accepted to be valid for high shear flows, typical 

of medium-large sized arteries [12]. However, this only holds 

true for the bulk flow and near-wall flow may be misrepresented 

by a Newtonian approximation. For the sake of simplifying the 

physics in this brief study, the Newtonian viscosity assumption is 

maintained; however it is noted that the model can be easily 

extended to account for more complex viscosity formulations 

(refer to [12] for a review of blood viscosity models). 

 

Figure 3. Boundary Γ𝑖 and domain Ω𝑖 labels for geometry of interest 

(where 𝑖 is an index). Local boundary coordinate systems are described 

by a surface normal axis 𝑥𝑛 and tangential axis 𝑥𝑡. 

As atherosclerosis growth is predominantly driven by mass 

transport, it is important that it be included amongst the 

governing equations. However, as described by earlier studies 

such as those by Cilla et al. [5], the mass transport process 

involved in atherosclerosis is complex and involves multiple 

interacting species. Therefore for the sake of meeting the desired 

growth progression with modest computational resources, this 

study avoids the extensive modelling requirements involved by 

only considering mass transport of LDL from the arterial lumen 

into the surrounding wall. Since LDL is a dominant species 

involved in atherosclerosis, this approach is satisfactory for a 

practical estimation of expected growth sites and their subsequent 

behaviour. Furthermore, it is expected that due to the convection-

dominated flow, small growths on an arterial wall won’t 

significantly affect growth outcomes on the opposite wall. 

Therefore as this study is concerned with only one wall segment, 

a further simplification is made such that growth physics are 

applied to boundary Γ𝑤2 alone (refer to figure 3) and not Γ𝑤4 in 

the region of interest (this is discussed later). 

It is well accepted that LDL is transported passively with blood 

flow, and so the passive scalar transport equation is employed to 

achieve this. For a pre-solved divergence-free vector field 𝑢 and 

constant isotropic diffusivity 𝐷, the steady-state scalar transport 

equation of LDL concentration 𝑐 is given by: 

𝒖 ⋅ ∇𝑐 − 𝐷∇2𝑐 = 0 (3) 

LDL diffusion coefficient is well accepted to be relatively 

constant and of the order 𝐷 = 5.0 × 10−12 𝑚2/𝑠 in blood [19]. 

Concentration 𝑐 is defined as a non-dimensional variable based 

on the inlet LDL concentration 𝐶0 = 1.2 𝑚𝑔/𝑚𝐿 [19], such that: 

𝑐 = 𝐶 𝐶0⁄  (4) 

With reference to figure 3, these governing equations are solved 

on all the enclosed volumetric regions Ω𝑖 (where 𝑖 is an index). 

The unstructured finite volume solver ANSYS Fluent is 

employed to solve the discretised integral forms of these 

equations on a computational grid of the geometry (figure 4). 

At the inlet boundary Γ𝑖𝑛, a uniform concentration profile 𝑐 = 1 

is prescribed and a Poiseuille velocity profile 𝑢𝑛 is assigned 

normal to the boundary: 

𝑢𝑛 = 2𝑢𝑎𝑣 (1 − 4 (
𝑥𝑡

𝑑
)

2

) (5) 

Where 𝑑 is the diameter of the whole arterial inlet and 𝑢𝑎𝑣 is the 

average velocity derived from the Reynolds number of the flow: 

𝑅𝑒 = 𝜌𝑢𝑎𝑣𝑑 𝜇⁄  (6) 

The equivalent non-dimensional parameter for the scalar 

transport equation is the mass-transfer Peclet number defined: 

𝑃𝑒 = 𝑢𝑎𝑣𝑑 𝐷⁄  (7) 

Since the Peclet numbers of LDL species in blood flow are 

characteristically very large (of the order ~108), then effectively 

away from wall boundaries, concentration transport is 

convection-dominated. Therefore, when a steady unidirectional 

flow exists at the outlet, it is safe to assume a zero-flux Neumann 

condition at the outlet boundary [8]. Though this condition is 

satisfactory in the bulk flow region of the outlet, at regions near 

the wall it is not so due to the spatially growing mass transport 

boundary layer. However, since the Peclet number is large, then 

the transport equation is weakly elliptic and so the effects of the 

misrepresented near-wall outlet boundary condition is degraded 

away from the boundary in the upstream direction. Therefore 

with the addition of the flow extension downstream of the region 

of interest (Ω2 in figure 3), the effects of the outlet boundary 

condition are not ‘felt’ significantly by the mass transport in Ω2. 

Due to the symmetry of the geometry (refer to figure 2), the 

boundaries Γ𝑠𝑖 are assigned symmetry conditions in both flow 

and mass transport. The remaining Γ𝑤𝑖 boundaries are prescribed 

with no-slip wall conditions. As described earlier, the top wall 

regions are of no interest to this study for mass transport and 

surface growth (though they are necessary for the flow). 

Therefore, since the Peclet number is large, mass transport on the 

top wall Γ𝑤4 won’t significantly affect mass transport on the 

lower wall Γ𝑤2. For this reason, mass transport is ignored on the 

top wall and a simple Dirichlet boundary condition 𝑐 = 1 is 

applied at Γ𝑤4 and Γ𝑤5 so that a mass boundary layer does not 

form. Furthermore, since Ω1 is strictly employed as a flow 

extension, then to avoid a growing boundary layer on the surface 

Γ𝑤1, a Dirichlet boundary condition 𝑐 = 1 is also applied there. 

 

Figure 4. Meshed domain showing mass boundary layer mesh resolution. 

mass boundary layer mesh



LDL flux into the arterial wall is applied to boundaries Γ𝑤2 and 

Γ𝑤3. It is modelled as the sum of convective flux (due to water 

infiltration) into the boundary and diffusive flux away from the 

boundary [8]; this is given by: 

𝐾𝑐𝑤 = 𝑉𝑤𝑐𝑤 − 𝐷
𝜕𝑐

𝜕𝑥𝑛
 (8) 

Where 𝐾 is the endothelial wall’s LDL permeability coefficient, 

𝑉𝑤 is the water infiltration velocity and 𝑐𝑤 the LDL concentration 

at the wall surface. Water filtration is assigned a constant value 

of 𝑉𝑤 = 1.78 × 10−8 𝑚/𝑠 [16]. It is well established that wall 

shear stress influences endothelial mass transport and hence the 

formation of atherosclerosis [3, 7, 8]. LDL permeability is 

therefore assigned a wall shear stress (𝜏𝑤) dependence. Himburg 

et al. [11] established a power law correlation of the form: 

𝐾 ∝ |𝜏𝑤|−0.118 (9) 

At regions of the artery where flow is not disturbed (i.e. there are 

no variations in wall shear stress), the endothelial permeability 

takes the value 𝐾0 = 2.0 × 10−10 𝑚/𝑠 [19]. Therefore to satisfy 

this condition, equation (9) is scaled to the form: 

𝐾 = 𝐾0 (
|𝜏𝑤0|

|𝜏𝑤|
)

0.118

 (10) 

For this study, the undisturbed flow wall shear stress |𝜏𝑤0| is 

approximated by the Poiseuille flow result: 

|𝜏𝑤0| =
8𝜇2

𝜌𝑑2 𝑅𝑒 (11) 

Due to the boundary condition described by equation (8), a mass 

boundary layer is formed in the near-wall region. However, as 

the LDL mass-transfer Peclet number is orders of magnitude 

larger than the Reynolds number for the flow, the mass boundary 

layer formed is significantly smaller than the momentum 

boundary layer. For this reason, special care is required in 

defining the near-surface mesh, so that the mass boundary layer 

is well captured. A penalty of high Peclet to Reynolds number 

flows is therefore the excessive near-wall mesh refinement 

required to capture mass transfer (refer to figure 4). 

Model Description 

The modelling approach presented here provides an estimate of 

the emergence and subsequent growth of atherosclerotic lesions. 

This approach attempts to reduce computational effort by 

eliminating temporal reliance of the governing mechanics. As a 

consequence of this approach, modelling of a wall domain is 

excluded, and its effect is instead modelled with appropriate 

boundary conditions. This approach lacks the rigour of other 

models that integrate mass conservation of the growing lesion [5, 

17]. However, it compensates for this by requiring considerably 

less computational effort. The approach presented here uses mass 

flux into the arterial wall as the driving force for growth. To 

achieve this, the wall is assumed to be an infinitely thin 

membrane; therefore a steady-state imbalance between mass flux 

entering and exiting the arterial wall is assumed to contribute to 

mass accumulation within the wall which would consequently 

drive growth. This is presented by equation (12), which describes 

the displacement of a material point 𝒙 by accumulated mass due 

to LDL flux into (𝐾𝑐𝑤) and out of (𝐾0𝑐𝑐) the wall. 

𝒙𝒋+𝟏 = 𝒙𝒋 + 𝑓𝑔 max {
𝐾𝑐𝑤 − 𝐾0𝑐𝑐

𝐾0𝑐𝑐
, 0} 𝒏 (12) 

The wall’s out-flux is taken to be equivalent to an in-flux 

condition at normal flow permeability 𝐾0 and critical 

concentration of 𝑐𝑐 = 1.2. Since flow and mass transport are 

solved to steady-state, a time scale is not involved. Alternatively, 

an iterative procedure as described by figure 5 is employed. To 

reduce the number of iterations performed and effectively 

accelerate growth, a multiplicative factor 𝑓𝑔 is proposed such that 

the resulting displacement is large enough to critically affect the 

local surface normal 𝒏 but not the flow field. Therefore, 𝑁𝑗 

iterations are performed to update the local surface mesh until the 

accumulated displacement is critically sufficient to influence the 

flow field since the last 𝑖-iteration. Following this, the flow and 

mass transport equations are resolved, and the procedure iterated 

𝑁𝑖 times. The parameter 𝑁𝑗 is therefore a function of the mesh 

length scales and the minimum length scale that would influence 

the flow; the smaller the parameter, the better the approximation. 

Whereas 𝑁𝑖 is determined by the user’s preference and is 

comparable to the total time of growth. 

 

Figure 5. Growth modelling algorithm. 

Results and Discussion 

The algorithm presented in figure 5 with the equations described 

earlier are implemented into ANSYS Fluent v14.5. For this 

study, Reynolds numbers characteristic of medium-large sized 

arteries are assessed for their influence on the emergence and 

growth behaviour of atherosclerotic lesions. The algorithm’s 

iteration parameters are selected to be 𝑁𝑖 = 20 and 𝑁𝑗 = 50. The 

results for this study are presented in figure 6 for a Reynolds 

number range 𝑅𝑒 = {150, 300, 450, 600}. 

 

Figure 6. Wall growth results (blue) at 𝑁𝑖 = 20 for four Reynolds 
numbers. The surrounding luminal flow velocity distribution is presented 

in non-dimensional form. Note, geometries are stacked about symmetry 
line for purpose of illustrating the arterial bifurcation (4 separate cases). 

From the flow distribution in figure 6, it is noticeable that the 

non-dimensional flow velocity takes a similar magnitude and 

pattern distribution in the bulk flow for each Reynolds number 
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tested. A distinctive variance is noticeable, mainly in the size of 

the recirculation zone formed at the flanks of the bifurcating site. 

It is well known [1] and shown in figure 6, that a direct 

relationship exists between flow Reynolds number and 

recirculation zone size. Implied from this is that at higher 

Reynolds numbers, larger low wall shear stress zones would form 

and so regions with high LDL flux into the arterial wall will be 

more distributed. This is noticeable in the distribution of growth 

lesions in figure 6; with higher Reynolds number flow, lesions 

are spread over larger space. 

It is observed that the extent of variation in the distribution of 

growth lesions is more pronounced at regions near the end of the 

recirculation zone than at the start. This is made evident by the 

vertical lines in figure 6, which mark the ends of the growth 

lesions for each Reynolds number case. This result is explained 

to be due to the geometry, which strongly influences the site of 

emergence of recirculation zones, whereas flow Reynolds 

number influences their size. 

With the same settings and iterations applied to each Reynolds 

number case, it is noticeable that the extent of growth normal to 

the surface is less pronounced for high Reynolds number flow. It 

is noticeable that though lesions are more spread out, they are 

thinner at high Reynolds numbers. This can be explained to be 

due to higher convective flow at the near-wall regions, which 

would reduce the diffusive flux term in equation (3), causing the 

mass transport boundary layer to be smaller and effectively 

reduce mass flux into the arterial wall (refer to equation (8)). 

Conclusions 

This study presents a computational model, designed with the 

intention to provide an estimate of the emergence and subsequent 

growth behaviour of atherosclerotic lesions. The developed 

model attempts to ease computational requirements by 

eliminating a time scale and reducing the number of species 

involved in mass transport to just that of LDL. Furthermore the 

arterial wall is eliminated as a separate domain, and its effect is 

instead modelled via boundary conditions. The model is assessed 

on a bifurcating arterial geometry and shown to provide a 

satisfactory estimate of the emergence and subsequent growth 

behaviour of atherosclerotic lesions. The results obtained were 

shown to correlate strongly with variations in Reynolds number, 

indicating the importance of resolving accurate flow fields in the 

development of atherosclerosis growth models. 
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