
19th Australasian Fluid Mechanics Conference 
Melbourne, Australia 
8-11 December 2014 

 
Vortex-induced Vibration of Four Cylinders in an In-line Square Configuration in Steady 

Flow 
 

K. Kaja, M. Zhao and Y. Xiang 
 

School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, Australia  
 
 

Abstract 

Vortex-induced vibration (VIV) of four rigidly connected circular 
cylinders in an in-line square configuration at a Reynolds number 
of 150 and a low mass ratio of 2.5 is investigated numerically for 
spacing ratios (L) of 1.5, 2, 2.5, 3 and 4. Among all the studied 

spacing ratios, the lock-in regime for L=1.5 is found to be the 
widest and the corresponding maximum amplitude is the largest. 
The response amplitudes in the lock-in regime for L=2 are the 
smallest, because of the strong interaction among the vortices. 
For L=2.5, 3 and 4, the lock-in regime is similar to that of a 
single cylinder and the response amplitudes in the lock-in regime 
are slightly higher than that of a single cylinder. The critical 
spacing ratio for vortex shedding to occur from the two upstream 
cylinders is much smaller than that for flow past a four stationary 

cylinders. The vortex shedding flows outside the lock-in regime 
for large spacing ratio of L=4 are in an anti-phase pattern, which 
is similar to that of flow past four stationary cylinders and leads 
to zero cross-flow displacement.  
 
Introduction  
 
Vortex-induced vibration (VIV) of a group of cylinders in fluid 

flow is of importance in engineering applications. It affects the 
stability of structures such as overhead cables, heat exchanger 
tube arrays, offshore riser pipes and offshore mooring cables. 
VIV of a circular cylinder has been studied extensively in the 
past decades and most of the studies are focused on the VIV of an 
elastically mounted rigid cylinder in flow. These works are 
summarized in [2, 14, 17, 19, 20]. The response of an elastically 
mounted cylinder in fluid flow is dependent on the Reynolds 

number, the mass ratio, the damping ratio and the reduced 
velocity. The Reynolds number is defined as /Re UD , with 

U, D and ν the free stream velocity, the cylinder diameter and the 
kinematic viscosity of the fluid, respectively. The mass ratio m* 
is the ratio of the cylinder mass to the displaced fluid mass. For a 

circular cylinder, )4//( 2* Dmm  , where, m is the cylinder 

mass per unit length, ρ is the density of the fluid. The reduced 

velocity is defined as DfUV nr /  with fn being the structural 

natural frequency of the cylinder.  
 
Many numerical studies on VIV of circular cylinders were 
conducted at very low Reynolds numbers using the two-
dimensional numerical models [3, 8, 9, 16, 23]. Different low 
Reynolds number studies focus on different aspects of the VIV. 

For instance, Singh and Mittal [16] focused their study on the 
hysteresis behaviour of the cylinder, Borazjani and Sotiropoulos 
[3] focused their study on the interference between two tandem 
vibrating cylinders.  Zhao [24] found both VIV and galloping for 
two cylinders in side-by-side arrangement and Zhao et al. [23] 
studied VIV of a square cylinder in fluid flow. The maximum 
response amplitudes in these low Reynolds number studies are 
generally much lower than those found in the high Reynolds 
number experimental tests. Two-dimensional numerical models 

based on the Reynolds-averaged Navier-Stokes (RANS) 
equations were also used to simulate VIV of circular cylinders at 
high Reynolds numbers in the subcritical Reynolds number 
regime and it was found RANS equations provide reasonable 
good results of the response amplitude and frequency. By solving 

the RANS equations, Pan et al. [13] and Guilmineau and Queutey 
[7] obtained good results of 1-dof VIV except in the upper branch 
and Zhao and Cheng [21] predicted super upper branch of the 
response in the 2-dof VIV very well. Numerical studies on VIV 
of two cylinders of different configurations are also conducted 
mainly at low Reynolds numbers [10, 11, 24, 25]. A number of 
experimental studies are conducted to understand the wake flow 
patterns for flow past four cylinders. Sayers [15] measured vortex 
shedding frequency for flow past four cylinders and found that 

the small change in the flow incident angle may lead to sudden 
change in the vortex shedding frequency. Flow past four 
cylinders in square arrangements is also studied by numerical 
simulations. Farrant et al. [4] and Han et al. [6] simulated flow 
past four cylinders in an inline square arrangement at a low 
Reynolds numbers of 200. The in-phase and anti-phase vortex 
shedding were well predicted in these numerical simulations. 
Oscillatory flow past four cylinders in a square arrangement was 

also studied numerically due to its engineering importance [1]. 
While flow past four cylinders has been studied extensively, the 
studies of the VIV of four cylinders in fluid flow are very rare. 
Zhao and Cheng [22] studied response of four cylinders in a 
square arrangement with a constant spacing ratio and various 
flow approaching angles numerically. The lock-in regime of the 
four cylinders was found to be affected significantly by the flow 
approaching angle.  

 
In this study, VIV of four rigidly coupled cylinders in an inline 
square arrangement at a low Reynolds number of 150 and a low 
mass ratio of 2.5 is studied numerically. The flow around the 
cylinders and the response of the cylinders are predicted by 
solving the two-dimensional Navier-Stokes (NS) equations and 
the equation of motion, respectively. The one-degree-of-freedom 
VIV in the cross-flow direction are simulated for spacing ratios 

of 1.5, 2, 2.5, 3 and 4 and reduced velocities ranging from 1 to 
30. The effects of the spacing ratio on the response of the 
cylinders and the vortex shedding flow pattern are discussed.  
 

Numerical Method  

VIV of four rigidly coupled cylinders in an inline square 
arrangement as shown in Figure 1 is considered. In this study the 
1-dof vibration of the cylinders in the cross-flow direction are 
simulated numerically.  

 
The governing equations for simulating the flow are the two-
dimensional incompressible Navier-Stokes (NS) equations. The 
Arbitrary Lagrangian Eulerian (ALE) scheme is applied to 
account for the moving boundaries of the cylinder surfaces. In 
this study the velocity (u, v), the time t, the coordinate (x, y) and 
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the pressure p are nondimensionalized as )/()~,~(),( nDfvuvu  , 

n
~

ftt  , Dyxyx /)~,~(),(  , )/(~ 22
n Dfpp  , respectively, where 

the tildes denote the dimensional parameters, D is the diameter of 
the circular cylinders, fn is the structural natural frequency of the 
system. By using the above nondimensionalization method, the 
NS equations in the ALE are expressed as 
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where x1=x and x2=y are the Cartesian coordinates in the in-line 
and the transverse directions of the flow as defined in Figure  1 
(a), respectively; ui is the fluid velocity component in the xi-

direction and 
iû  is the moving velocity of the mesh nodes. The 

motion of the cylinder is predicted by solving the two-degree-of-
freedom equation of the motion for the displacements of the 
cylinder system: 
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where X1=X and X2=Y are the displacements of the four-cylinder 

system in the x- and y-directions, respectively; m* = m/md is the 
mass ratio with m being the total mass of the four cylinders and 

2
d Dm   is the displaced mass of the fluid by the four 

cylinders; Kmc /2  is the damping ratio with c and K 

being the damping constant and spring constant of the system, 

respectively;  LC  is the sum of the lift coefficients in the y-

direction of the four cylinders. The drag and lift coefficients of a 

cylinder are defined as )2//( 2DUFC DD   and 

)2//( 2DUFC LL  with FD and FL being the drag and lift 

forces in the inline and the cross-flow directions, respectively and 
ρ being the fluid density. For 1-dof VIV in the cross-flow 

direction, only cross-flow component of Eq. (3) is solved. The 
governing equation for calculating the displacements of the nodes 
of the FEM mesh is [21] 

   0 yS ,          (4) 

where 
yS  represents the displacement of the nodal points in the 

y-direction, and γ is a parameter that controls the mesh 
deformation, which is set to be γ=1/A, with A being the area of 
the element. The displacement of the mesh nodes is the same as 
the displacement of the cylinder on the cylinder surface and zero 
on other boundaries. By giving the displacements at all the 
boundaries, Eq. (4) is solved by a Galerkin FEM. Initially, the 

velocity and the pressure are zero in the whole computational 
domain and the cylinder’s displacement and velocity are zero in 
all the simulations.  
 
A rectangular computational domain with a height of 40D in the 
cross-flow direction and a width of 60D in the flow direction is 
used, corresponding to a blockage ratio of 0.05. Previous studies 
showed that the domain width has little effects on the result of 
the cylinder response if the blockage ratio is less than 0.05 [12]. 

The computational domain is divided into four-node quadrilateral 
bi-linear elements as shown in Figure 1. The numbers of the 
finite element nodes vary from 49725 to 50083 for L=1.5 to 4. 
Refined elements are used close to the cylinder surfaces in order 
to capture the strong variations of the flow field. 96 elements are 
distributed along the surface of each cylinder. The minimum 
nondimensional mesh size at the cylinder surface is 0.002. 
Initially the velocity and the pressure in the whole computational 

domain are zero. The velocity is Vr at the inlet boundary and is 
equal to the vibration speed of the cylinders on the cylinder 

surfaces. At the outflow boundary the pressure is set to be zero 
and the gradient of the velocity in the flow direction is zero. At 
the two lateral boundaries, the gradient of the pressure and the 
velocity in the cross-flow direction are zero.  

 

Figure 1. Sketch for VIV of four cylinders in an inline arrangement; 

Computational mesh near the four cylinders in an in-line square 

configuration for L=2.5 

 
Numerical Results  
 
VIV of four cylinders in an inline square arrangement are 
simulated for a constant Reynolds number of 150, a constant low 
mass ratio of 2.5, and spacing ratios of 1.5, 2, 2.5, 3 and 4. 
Simulations are carried out for reduced velocities ranging from 1 
to 25, which cover the lock-in regimes for all the spacing ratios. 
The four cylinders are rigidly connected with each other and they 
vibrate as a single body. The 1-dof VIV in the cross-flow 

direction is simulated. The validation of the numerical model in 
the simulations of flow past a single stationary cylinder, VIV of a 
single cylinder and VIV of two cylinders at low Reynolds 
numbers have been demonstrated in [25] and will not be repeated 
here. The density of the computational mesh used in this study 
shown in Figure 1 (b) is the same as that used in the study of VIV 
of two cylinders in fluid flow at Re=150 in [25].  
 

Figure 2 shows the variations of the response amplitude and 
frequency with the reduced velocity for the 1-dof vibrations in 
the cross-flow direction. The nondimensional amplitude in the y-

directions is defined as 2/)( minmaxy YYA  , where the 

subscripts “max” and “min” stand for the maximum and 
minimum displacement, respectively. The response frequencies 
are determined by the fast Fourier transform (FFT) of the 
vibration displacement. For a broad branded FFT spectrum of an 
irregular vibration, the frequency is determined to be the peak 
frequency of the spectrum with the highest amplitude. The 

nondimensional frequency fy is the ratio of the response 
frequencies in the y-directions to the structural natural frequency. 
Based on the high amplitude and the closeness between the 
natural frequency and the vibration frequency, the lock-in regime 

for a single cylinder is 85.3 r V . For L=1.5, the four cylinders 

behave as a single body with greater dimension than a single 
cylinder. It can be seen that the maximum response amplitude for 
L=1.5 is about twice that of a single cylinder. The lock-in regime 
for L=1.5 is also much wider than that of a single cylinder. For 
L=1.5, the response frequency increases with the increasing 
reduced velocity until Vr=7, after which the response frequency 

changes little until Vr=25.  
 

The response amplitudes for L=2 are the smallest among other 
spacing ratios. The response frequency for L=2 is close to the 
natural frequency in the wide range of reduced velocity 

of 253 r V . The low amplitude for L=2 can be explained by 

the FFT spectra of the vibration displacement and the lift 
coefficient shown in Figure 3. The spectra of displacement and 

lift coefficient are plotted together in order to see the correlation 
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between the force and the response. For L=2 and 10r V , the 

spectra of the displacement and lift coefficient are broad banded 
as shown in Figure 3 (e),leading to the reduction in the response 
amplitude. The responses are generally very irregular for a broad 
banded spectrum, and the frequency component corresponding to 
the response frequency is not the one with the highest peak value. 
This explains that the response amplitude for L=2 is the lowest 

among other spacing ratios. The response amplitude for L=1.5 is 
reduced suddenly as the reduced velocity is increased from 20 to 
22. This is due to that the peak frequency of the response 
displacement and that of the lift coefficient are not the same as 
shown in Figure 3 (c). Zhao and Cheng [22] also reported that the 
peak response frequency is different from the peak frequency of 
the lift force for irregular response of four cylinders in the 
turbulent flow regime.  
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Figure 2. Variations of response amplitude and frequency with reduced 

velocity in the cross-flow direction for 1-dof VIV 

 

The vortex shedding for the flows past four stationary cylinders 
is in an anti-phase pattern for L=2.5 to 4 which leads to zero lift 
force. However, the response amplitudes for a vibrating cylinder 
at these spacing ratios are the evidence of asymmetric vortex 

shedding flow. Fig.4 shows the vorticity contours for L=1.5 and 
Vr=15 for the 1-dof VIV. Two negative vortices are shed from the 
cylinder when the cylinder is moving downwards and two 
positive vortices are shed when the cylinder is moving upwards. 
The response amplitude corresponding to figure 4 is much higher 

than that of a single cylinder because of the larger dimension of 
the four cylinder structure. 
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Figure 3. FFT spectra of the displacement and the lift coefficient for the 

1-dof VIV of four cylinders 

 
 

 

Figure 4. Vorticity contours for L=1.5 and Vr=15 in the 1-dof VIV 

Figure 5 shows the vorticity contours for Vr=5 and different 
spacing ratios. The vortex shedding for L=1.5 and Vr=5 is 
similar to that of four stationary cylinders because the response 
is outside lock-in regime with a small amplitude. The biased 
flow is also observed for L=2 and 3 at Vr=5, and the biasness of 
the flow for L=3 appears much stronger than that for L=2. For 

each of the biased flows in Figure 5 (b) and (c), strong 
interaction among vortices occurs immediately behind the 
cylinder and the wake flow about 10 diameters downstream the 
cylinder is characterized by two rows of vortices. In Figure 5 , it 
can be seen that the critical spacing ratio for the vortex shedding 
to occur from the upstream cylinders is much smaller than that 
for flow past four stationary cylinders. The vortex shedding 
from the two upstream cylinders synchronizes in the lock-in 
regime. The biased flow disappears when the spacing ratio 

reaches 4 as shown in Figure 5 (d), indicating the weakness of 
the influences among the cylinders. The four rows of vortices 
are very regularly aligned in the wake of the cylinders in Figure 
5 (d).  



 
Figure 5.Vorticity contours of 1-dof VIV for Vr=5 and different spacing 

ratios 

 

Conclusions 

VIV of four circular cylinders in an in-line square configuration 
at a Reynolds number of 150 and a low mass ratio of 2.5 are 
investigated numerically. In this study, extensive simulation is 
carried out for the spacing ratios of L=1.5, 2, 2.5, 3 and 4 and 

reduced velocities ranging from 1 to 25, which covers the full 
lock-in regime for all the gap ratios. The lock-in regime for L=1.5 
is found to be the widest among other spacing ratios. The lock-in 
regime for L=1.5 is wider and the response amplitude in the lock-
in regime is higher, because the four cylinders behave as a single 
body. The response amplitudes in the lock-in regime for L=2 are 
the smallest among those in other spacing ratios, because of the 
strong interaction among the vortices. For L=2.5, 3 and 4, the 
lock-in regime is similar to that of a single cylinder and the 

response amplitudes in the lock-in regime is slightly higher than 
that of a single cylinder. For the intermediate spacing ratio of 
L=2, the response frequency is found to be close to the natural 

frequency in the wider range of reduced velocity 253 r V . 

However, the response amplitude for L=2 is smaller than those in 
other spacing ratios. The FFT analysis shows that the lift 
coefficient at L=2 is broad banded and the component of the lift 
coefficient that excites the vibration is not the peak frequency, 
leading to low response amplitude. The vortex shedding for VIV 
of four cylinders is different from that for flow past four 

stationary cylinders mainly in two aspects. Firstly, the critical 
spacing ratio for vortex shedding from the two upstream 
cylinders is between 1.5 and 2, which is much smaller than that 
for flow past the four stationary cylinders. Secondly, biased 
vortex shedding flow is observed in the wake of the four 
vibrating cylinders for L=2, 2.5 and 3. The strongest biasness of 
the flow is found for L=3, leading to the increase of the mean 
cross-flow position with the increasing reduced velocity.   
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