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Abstract

Townsend’s attached eddy hypothesis states that the flow in
the logarithmic region of wall-bounded turbulent flows will be
dominated at the energy-containing scales by a hierarchy of ed-
dies, whose corresponding velocity fields extend to the wall
[20]. These eddies are assumed to be geometrically self-similar,
differing from each other only in their size, which scales with
their distance from the wall. The hypothesis has subsequently
gained significant support from high Reynolds number experi-
ments and from numerical simulations [17].

Recently, a more rigorous physical and mathematical basis for
the attached eddy hypothesis has been put forward by Marusic
and Woodcock [12]. In this present work, we utilise this anal-
ysis to investigate the predicted nature of von Kármán’s con-
stant (κ), which has been a source of controversy, particularly
since Townsend [20] argued that κ should change at very high
Reynolds numbers. We show that strictly applying the attached
eddy hypothesis results in von Kármán’s constant rapidly ap-
proaching a constant value as the Reynolds number increases.

Introduction

The great complexity of turbulent flows has always been a huge
barrier to the development of practical physical models of the
phenomenon. Furthermore, the direct numerical simulation of
turbulent flows is limited by Reynolds number due to the in-
creasing multitude of scales that need to be resolved.

One prominent model for wall-bounded flows stems from the
so-called attached eddy hypothesis of A. A. Townsend [19].
Townsend’s hypothesis, states that the flow in the log-region
consists of a series of geometrically self-similar eddies, which
scale with their distance from the wall, and whose correspond-
ing velocity fields extend to the wall. In this way, the study of a
highly complicated phenomenon involving many scales of mo-
tion is effectively reduced to the study of a single representative
eddying motion.

In order to produce statistical predictions from the attached
eddy hypothesis, Townsend adopted a distribution of eddy sizes
specifically in order to obtain a constant Reynolds shear stress
[20]. Using this model, Townsend was able to derive the
second-order moments of the velocity as a function of the dis-
tance from the wall. If u, v and w represent the velocity fluctu-
ations in the streamwise, spanwise and wall-normal directions
respectively, he obtained〈

u2
〉+

= B1−A1 log(z/δ) , (1)〈
v2
〉+

= B1,v−A1,v log(z/δ) , (2)〈
w2
〉+

= B1,w, (3)

−〈uw〉+ = 1, (4)

where the angled brackets represent ensemble averages. Here,
δ denotes the maximum distance from the wall at which the
flow is dominated by the presence of the attached eddies (i.e.

the boundary layer thickness), and the superscript + indicates
that the quantities have been scaled according to wall variables,
that is with Uτ, the friction velocity or ν/Uτ, the viscous length
scale. All of the As and Bs above are constants. This result only
applies where the flow is sufficiently close to the wall to be af-
fected by its presence and yet sufficiently far from the wall that
the effect of viscosity is negligible. The above equations have
subsequently been vindicated by high Reynolds number exper-
iments [3, 4, 9, 11, 13, 21] and direct numerical simulations
[17].

Various authors have reviewed the nature of the log-region in
recent years [1, 5, 6, 10, 18]. While there remain differing in-
terpretations of the causal relationships between the coherent
structures in the log-region, a consensus has emerged that the
region contains a hierarchy of eddies, whose behaviours and
distribution concur with Townsend’s hypothesis. It has been
shown that such a self-similar hierarchical structure is consis-
tent with invariant solutions associated with the leading order
dynamics [7, 8].

Townsend’s result was extended by Perry and coworkers [14,
15, 16], who also used the attached eddy hypothesis along with
a prescribed distribution of eddy sizes to obtain the classical
logarithmic law of the wall:

〈U〉+ =
1
κ

log
(
z+
)
+C, (5)

where κ is von Kármán’s constant, and C depends on the rough-
ness of the surface, but is otherwise constant.

It is noted that the both of these derivations (for equations 1-5)
were predicated on the adoption of a prescribed distribution of
eddy sizes, and also on the assumption that there are no corre-
lations between eddies of different sizes.

Recently, Woodcock & Marusic [12, 22] formulated a new
derivation of the attached eddy model, which minimised the
number of assumptions. They avoided specifying either a pre-
scribed distribution of eddy sizes or a constant Reynolds shear
stress. In order to do this, they presented an extended form of
Campbell’s theorem (originally a method used to account for
the random arrival of electrons at an anode, and now applied
to the random placement of eddies on a wall). Using this, they
were able to derive all of the moments of the velocity fluctua-
tions.

In this work, we look at the implications of this new derivation
of the attached eddy model for von Kármán’s constant. Pre-
viously, Townsend [20] and Davidson [2] have predicted that
the attached eddy hypothesis should result in a von Kármán’s
constant that continually changes with the Reynolds number.
Townsend argued that von Kármán’s constant will increase as
the ratio of the energy present in the fluctuations to that present
within the mean flow increases. He therefore concluded that any
such variations would be unlikely to be detectable under ordi-
nary circumstances, but would become important at extremely
large Reynolds numbers. Conversely however, we find that von
Kármán’s constant initially increases with the Reynolds num-



ber, but rapidly converges to a constant.

Mathematical Formulation

Following the attached eddy hypothesis, the velocity distribu-
tion is modelled as the superposition of the velocity fields cor-
responding to each of the eddies present. The eddies are all of
identical shape and relative dimensions, and differ only in their
heights.

Each individual eddy can therefore be seen as a separate system.
Its defining characteristics are its height, h, and its location on
the wall, xe. The length scale of the eddy will therefore be h,
while the friction velocity will be its velocity scale.

Therefore, if Q is the velocity field at x corresponding to an
individual eddy, then its spatial and height dependence will be

Q = Q
(

x−xe

h

)
. (6)

The total velocity, U(x), is then simply the superposition of the
velocity fields corresponding to each of the individual eddies.
However, we could never postulate the locations and sizes of
all eddies present, and so we must instead consider only the
statistical properties of the entire flow. (We apply the method
of images at the wall, z = 0, in order to determine the boundary
conditions. This will become important subsequently.)

The distribution of eddy sizes follows from the observation that
h is the system’s only natural length scale. From dimensional
analysis, for eddies that are space-filling we can see that if ρh
denotes the density of eddies of size h, then

ρh ∝
1
h3 . (7)

The probability that an eddy has size h, which we denote by
P(h), will clearly be proportional to ρh. Therefore, if the heights
of the eddies range from hmin and hmax, then the probability can
be determined via normalisation to be

P(h) = 2
(

h−2
min−h−2

max

)−1 1
h3 . (8)

To simplify the equations, particularly at higher orders we in-
troduce a new set of functions, λk,l,m, known as the cumulants
of the velocity:

λk,l,m(z) = β

hmax∫
hmin

Ik,l,m

( z
h

)
h2P(h)dh, (9)

where the coefficient β represents the density of eddies on the
wall and Ik,l,m(z/h) is called the eddy contribution function, and
is given by

Ik,l,m (Z) =
∞∫
−∞

∞∫
−∞

Qk
x (X)Ql

y (X)Qm
z (X) dX dY. (10)

The capital X, and its components X , Y and Z, represent the
location scaled by h. That is, (X ,Y,Z) = (x/h,y/h,z/h). Using
cumulants, the mean velocity can be expressed as

〈U〉= λ1, 〈V 〉= λ0,1,0, 〈W 〉= λ0,0,1, (11)

where we have used the shorthand

λn ≡ λn,0,0 (12)

for purely streamwise quantities. If we denote velocity fluctua-
tions by u, so that

u(x) = U(x)−〈U(x)〉, (13)

then the moments of these velocity fluctuations are given by

〈u2〉= λ2, (14)

〈u3〉= λ3, (15)

〈u4〉= λ4 +3λ2
2, (16)

〈u6〉= λ6 +15λ2λ4 +10λ2
3 +15λ3

2, (17)

〈u8〉= λ8 +28λ2λ6 +56λ3λ5 +35λ2
4

+ 210λ2
2λ4 +280λ2λ2

3 +105λ4
2, (18)

〈uw〉= λ1,0,1, (19)

and similarly for 〈vn〉 and 〈wn〉.

General Flow Properties

In order to derive the flow profiles from the attached eddy hy-
pothesis, we must recognise that the velocity field correspond-
ing to a single eddy will only be non-negligible for a finite dis-
tance from the wall. Mathematically, we can therefore say that
there must exist some α such that

Q
(x

h

)
≈ 0, for z > αh (α > 1). (20)

By substituting (8) into (9) and rearranging it is possible to show
that, so long as z > αhmin,

λk,l,m(z) = 2β

(
h−2

min−h−2
max

)−1
α∫

z/hmax

Ik,l,m(Z)
dZ
Z
. (21)

This takes into account the fact that where Q is zero, Ik,l,m will
also be zero. The implication of the fact that Ik,l,m will diminish
at higher Z, is that a significant portion of λk,l,m will emanate
from around Z' 0. It is therefore reasonable to expand Ik,l,m(Z)
in a Taylor series around Z = 0. This results in

Ik,l,m(Z) = Ik,l,m(0)+ Ĩk,l,m(Z), so that Ĩk,l,m(0) = 0, (22)

where Ĩk,l,m(Z) contains all of the higher order terms in the Tay-
lor series expansion. Substituting this into (21) and integrating
where possible gives

λk,l,m(z) = Ak,l,m log
(

z
hmax

)
+Bk,l,m, for z� hmax,

(23)
where Ak,l,m and Bk,l,m are constants given by

Ak,l,m =− 2β

h−2
min−h−2

max
Ik,l,m(0), (24)

Bk,l,m =
2β

h−2
min−h−2

max

Ik,l,m(0) logα+

α∫
0

Ĩk,l,m(Z)
Z

dZ

 . (25)

It is important to note that since the the fluid cannot flow
through the wall at Z = 0, all Ik,l,m will be zero at Z = 0 if m 6= 0
(that is if the eddy contribution function has a wall-normal com-
ponent). This results in a constant λk,l,m wherever m 6= 0.

Implications for von Kármán’s Constant

It is now possible to determine the Reynolds number depen-
dence of von Kármán’s constant through the above results



for the mean velocity. However, first we need to define the
Reynolds number, Reτ, in terms of the range of eddy sizes
present. Accordingly, we adopt

Reτ = 100
hmax

hmin
. (26)

It is clear from (23) and (24) that von Kármán’s constant will be
given by

1
κ
=− 2β

h−2
min−h−2

max
I1,0,0(0). (27)

We would, however, prefer to not express κ in terms of β, the
density of eddies per unit area, since β will depend upon the
range of scales present within the flow. We will therefore re-
express κ in terms of universal quantities.

To this end, we introduce N, representing the number of eddies
present. Because the placement of the eddies is a Poisson pro-
cess, N can be inferred from the expected distance from a single
eddy to its nearest neighbour in the positive x and y directions.
The spatial self-similarity of the eddies affects not only their
heights and intensities, but also the average distances between
them. Furthermore, it follows from the fact that the placement
of eddies is a Poisson process that the expected distance to each
subsequent eddy will depend only on the height of the subse-
quent eddy (and not the previous eddy).

We now define a new constant kx, such that if the height of
the next-closest eddy were known to be h, then the expected
distance to the next-closest eddy in the positive x-direction will
be kxh. (More specifically, kxh represents the distance in a strip
of height h′ to the nearest eddy of height between h and h+dh
divided by h′ and dh.) For the spanwise direction, we define an
analogous constant ky.

If the nearest eddy in the positive x-direction were known to be
of height h1 and the nearest eddy in the positive y-direction were
known to be of size h2, then we would know that the number of
eddies present, on a plane of area L2, would be expected to be

Nh1,h2 =
L2

(kxh1)(kyh2)
. (28)

We can now infer N from the probability density of the eddy
heights via

N =

hmax∫
hmin

hmax∫
hmin

Nh1,h2 P(h1)P(h2)dh1 dh2. (29)

By substituting (8) into the above, and integrating, we find that

N =
4
9

L2

kxky

(
1−
(

hmin
hmax

)3
)2

h2
min

(
1−
(

hmin
hmax

)2
)2 (30)

By using the fact that β≡ N/L2 we can rewrite (27) as

1
κ
=−

8I1,0,0(0)
9(kxky)

(
1−
(

hmin
hmax

)3
)2

(
1−
(

hmin
hmax

)2
)3 . (31)

By substituting the Reynolds number for the eddy size ratios
using (26), this becomes

1
κ
=−

8I1,0,0(0)
9(kxky)

(
1−106Re−3

τ

)2

(
1−104Re−2

τ

)3 . (32)
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Figure 1: Graph showing the dependence of von Kármán’s con-
stant on the Reynolds number.

As Reτ increases, this asymptotes to a constant, which we de-
note by κ∞. It is given by

1
κ∞

=−
8I1,0,0(0)
9(kxky)

. (33)

The ratio of von Kármán’s constant to its asymptote is simply

κ

κ∞

=

(
1−104Re−2

τ

)3

(
1−106Re−3

τ

)2 , (34)

A plot of the above function can be seen in figure 1. There it
can clearly be seen that while κ increases very slowly with the
Reynolds number at low Reτ, it rapidly asymptotes to a con-
stant. This contradicts the predictions of Townsend [20] and
indicates that the attached eddy hypothesis does indeed predict
a universal log-law at high Reynolds numbers.

Conclusions

Townsend’s attached eddy hypothesis states that the flow in
the log-region is dominated by a hierarchy of geometrically
self-similar eddies, the velocity fields corresponding to each of
which extend to the wall. Townsend [20] himself predicted that
the attached eddy hypothesis would produce a von Kármán’s
constant that varied significantly with the Reynolds number at
high Reynolds number, but should vary little at low Reynolds
number. This would imply that the flow profile would not obey
a log-law at very high Reynolds numbers, and this is discussed
further by Davidson [2].

However, we have demonstrated here that according to the at-
tached eddy hypothesis von Kármán’s constant will rapidly ap-
proach a constant as the Reynolds number increases, and is in
clear contrast to the argument of Townsend. The important im-
plication of this result is that the log-law should be expected to
hold at all sufficiently high Reynolds numbers.

While previous applications of this hypothesis were predicated
upon a series of physical and mathematical assumptions, in this
work we seek to minimise the number of assumptions necessary
in applying the attached eddy hypothesis.

As with earlier applications of the attached eddy model, we ef-
fectively model the flow in the inviscid log-region through a
single eddying motion. This we achieve by modelling the flow



as a random distribution of self similar eddies. To this end, we
have extended Campbell’s theorem to apply to the random dis-
tribution of eddies on a wall.
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