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Abstract

In this study, linear perturbation equations for CSS flows, in
which two comparable orthogonal basic flow velocities (stream-
wise and spanwise velocities) coexist in a stratified environ-
ment, are derived in terms of a characteristic parameter, the
cross shear ratioξ= ∆v0/∆u0, where∆u0 and∆v0 are the initial
streamwise and spanwise velocity changes across the sheared
layer, respectively. The stability features of a cross free sheared
flow, a cross bounded sheared flow, and a cross jet flow with
specific velocity and stratification profiles are obtained. The re-
sults show that the unstable regions of all these three types of
CSS flows stretch towards large values of the local Richardson
numberRig with the introduction of the spanwise velocity, and
the growth rate of the perturbation increases significantly when
ξ increases. As a result of such a stretching effect, the stabil-
ity boundary in terms of the critical local Richardson number
Rig,cr expands with increasingξ and exceedsRig,cr = 0.25, a
value predicted by the classic Miles-Howard theorem.

Introduction

Hydrodynamic analysis, which studies the critical conditions
and the effective domain for flow instability, plays an impor-
tant role in the study of sheared stratified (SS) flows. So far,
the majority of the hydrodynamic analysis on SS flows has
been prompted by the earlier linear stability analysis on paral-
lel sheared stratified (PSS) flows, where the basic flow velocity
components satisfyV ≪U , whereU andV are the streamwise
and spanwise components of the basic flow in thex andy di-
rections, respectively. The linear stability analysis was initiated
by the studies on PSS flows by deriving the Taylor-Goldstein
(TG) equation, and the classical Miles-Howard theorem pre-
dicts thatRig ≤ 0.25, whereRig is the local Richardson number,
is the critical condition for a stationary unstable mode under in-
finitesimal perturbations. Such an unstable mode corresponds to
the Kelvin-Helmholtz (KH) instability. By considering the ra-
tio between the sheared layer thickness and the stratified layer
thickness, Hazel [1] solved the TG equation numerically and
obtained the Holmboe instability.

In contrast to a ‘parallel’ flow withV ≪ U , a SS flow with
comparableV and U can be appropriately named a ‘cross’
sheared stratified (CSS) flow. The past studies on CSS flows, al-
though very scarce, revealed distinctive and more complicated
flow instabilities. For example, Atsavapranee & Gharib [2] ob-
served experimentally smaller spanwise eddy structures devel-
oped from the ‘braid’ region of the main streamwise KH eddy,
whereas Linet al. [3] examined numerically the effects of the
cross shear stresses on a two-layer stratified flow. A common
and noteworthy conclusion from both these studies is that the
mixing effect of CSS flows is significantly enhanced compared
to PSS flows at the same conditions.

Although CSS flows seem to be a promising basic flow config-
uration in terms of the mixing effect, to our best knowledge,
the relevant stability analysis has not been reported, which mo-
tivates this study. Based on the previous studies on CSS flows
and the stability analysis on PSS flows by Hazel [1], this study
derives the linearized perturbation equations for CSS flows by
adding the spanwise basic velocityV in the original Taylor-
Goldstein equation system. The introduction ofV brings in
a new, and unique, characteristic parameter called the cross
shear ratio,ξ = ∆v0/∆u0, for CSS flows, where∆u0 and∆v0
are the initial streamwise and spanwise velocity changes across
the sheared layer in thex andy directions, respectively. With
ξ, the two-dimensional TG equation can be extended to three-
dimensional complex basic flow states so that a PSS flow be-
comes a special case of a CSS flow withξ = 0. Using the
derived perturbation equations for CSS flows, this study then
examines the linear stability features of three CSS flows,i.e., a
cross free sheared flow, a cross bounded shear flow, and a cross
jet flow. The PSS flow counterparts of each of the three CSS
flows are also examined as theξ = 0 case.

Linearized Perturbation Equations

With the Boussinesq approximation, the governing equations
for an inviscid, incompressible, stratified flow are,

∇∗ ·u∗ = 0 (1)

ρ̄∗
∂u∗
∂t∗

+ ρ̄∗(u∗ ·∇∗u∗) =−∇∗p∗−g(ρ∗− ρ̄∗)~k (2)

∂ρ∗
∂t∗

+u∗ ·∇∗ρ∗ = 0 (3)

in which u∗ is the velocity vector with the components (u∗, v∗,
w∗) in the Cartesian coordinates (x∗, y∗, z∗), p∗ is pressure,ρ∗
is density,ρ̄∗ is the reference density,t∗ is time, and the differ-
ential operator∇∗ = (∂/∂x∗)~i+(∂/∂y∗)~j+(∂/∂z∗)~k, where~i,
~j and~k represent the unit vector inx∗, y∗ andz∗ directions.

The equations (1)-(3) can be made dimensionless as follows,

∇ ·u = 0, (4)

ρ̄
∂u
∂t

+ ρ̄u ·∇u =−∇p− (ρ− ρ̄)
Fr2

~k, (5)

∂ρ
∂t

+u ·∇ρ = 0, (6)

where the dimensional quantities are made dimensionless using
their respective characteristic scales,i.e.,

x =
x∗
L
, t =

t∗Vc

L
, u =

u∗
Vc

,

p =
p∗

∆ρ∗V 2
c
, ρ =

ρ∗
∆ρ∗

, ρ̄ =
ρ̄∗

∆ρ∗
,















(7)



in whichx is the dimensionless coordinate vector(x~i+y~j+z~k),
L is the characteristic length scale which is the thickness of the
effective sheared layer determined by the streamwise velocity
profile of the basic flow,Vc and∆ρ∗ are the characteristic veloc-
ity and density scales which are the initial streamwise velocity
and density changes across the sheared/stratified layer, respec-
tively. Fr =Vc/

√
gL in (5) is theFroude number.

It is assumed that the flow quantities consist of the basic flow
and infinitesimal perturbations,

u(x, t) = U(z)+u′(x,t), (8)

ρ(x, t) = ρb(z)+ρ′(x,t), (9)

p(x, t) = P(z)+ p′(x, t) = p0−
1

Fr2

∫ z

0
ρb(z)dz+ p′(x, t),

(10)
whereU is the dimensionless basic flow velocity vector where
the components inx, y andz directions areU , V andW , ρb is the
dimensionless basic density profile,p0 is the dimensionless ref-
erence pressure corresponding to the dimensionless reference
densityρ̄. The superscript symbol ‘′’ represents the perturba-
tion part of the corresponding physical property.

Both the basic flow and the total flow (basic flow + infinites-
imal perturbations) are governed by the equations (4)-(6). By
substituting (8)-(10) into (4)-(6) and assuming the product of
an infinitesimal quantity and its gradient is negligible [4],i.e.,
u′ ·∇u′ ≈ 0 andu′ ·∇ρ′ ≈ 0, as well as noting thatU ·∇ρb(z) =
0, the following perturbation equations are deduced,

∇ ·u′ = 0, (11)

ρ̄
∂u′

∂t
+ ρ̄(U ·∇u′+u′ ·∇U) =−∇p′− ρ′

Fr2
~k, (12)

∂ρ′

∂t
+U ·∇ρ′+u′ ·∇ρb(z) = 0. (13)

For the CSS flows considered here, all the basic flow proper-
ties are assumed to vary with the vertical coordinatez only. In
particular, the following basic flow velocities are assumed,

U(z) =U(z)~i+V (z)~j.

The following normal mode is used in the subsequent linear
stability analysis,

φ′(x, t) = φ̂(z)ei(αx+βy)−iαct = φ̂(z)ei(αx+βy)−σt , (14)

wherei is the imaginary unit of a complex number,α andβ are
the streamwise and spanwise wavenumbers, respectively, and
the perturbation quantityφ′ represents velocity, density, tem-
perature, buoyancy flux, and other physical quantities. The hat
symbol denotes the peak amplitude of the corresponding pertur-
bation. σ = −iαc is the temporal growth rate of the perturba-
tion, wherec is the wave (phase) speed.

Substituting the normal modes into (11)-(13) leads to,

iαû+ iβv̂+Dŵ = 0, (15)

ρ̄(σ+ iαU + iβV )û+ ρ̄Uzŵ =−iα p̂, (16)

ρ̄(σ+ iαU + iβV )v̂+ ρ̄Vzŵ =−iβ p̂, (17)

ρ̄(σ+ iαU + iβV )ŵ =−Dp̂− ρ̂
Fr2 , (18)

(σ+ iαU + iβV )ρ̂+ρb,zŵ = 0, (19)

whereD = ∂/∂z is the differential operator for the perturbation
properties, andρb,z = ∂ρb(z)/∂z.

By applying the following Squire transformations [4],

α̃ = (α2+β2)1/2, ũ =
αû+βv̂

α̃
,

p̃ =
α̃
α

p̂, ρ̃ =
α̃
α

ρ̂, b̃ =
ρ̃
ρ̄
,















(20)

where the hat symbols denote the Squire transformation prop-
erties, the three-dimensional perturbation equations (15)-(19)
can be reduced, after a series of operations which are omitted
here due to the page limit, to the following equivalent two-
dimensional perturbation equations,

σ̃
[

∇2
s

I

][

ŵ
b̃

]

=

[

R11 R12
R21 R22

][

ŵ
b̃

]

, (21)

where

R11 =−iα̃(U∇2
s −Uzz)− iα̃

β
α

ξ(∇2
sU −Uzz),

R12 =
α̃2

Fr2 , R21 = Ñ2, R22 =−iα̃U

(

1+
β
ξ

)

,















(22)

where σ̃ = σ(α̃/α) is the Squire temporal growth rate of the
perturbations properties and̃N2 = −ρ̃b,z/ρ̄ is the local Squire
buoyancy Brunt-V̈ais̈alä frequency. The Squire Laplacian oper-
ator∇2

s is defined as∇2
s = D2− α̃2. ξ =V/U is the shear stress

ratio and it is assumed thatU andV have the same hyperbolic
profile f (z) but differing only in their amplitudes. Ifξ = 0 or
β = 0, (21) will reduce to the Taylor-Goldstein equation.

For inviscid sheared stratified flow, the velocity shear and the
buoyancy form a single governing parameter, the local Richard-
son numberRig(z∗), which is defined as,

Rig(z∗) =
−(∂b∗/∂z∗)
(∂u∗/∂z∗)2

=
N2
∗

(∂u∗/∂z∗)2
(23)

where, again, the subscript ‘*’ denotes the dimensional quan-
tities, b∗ = gρ∗/ρ̄∗ is the dimensional buoyancy,N2

∗ =
−g(∂ρ∗/∂z∗)/ρ̄∗ is the dimensional local Brunt-V̈ais̈alä fre-
quency, andρ̄∗ is the dimensional reference density, respec-
tively. Hazel [1] suggested that when the dimensionless basic
velocity and background stratification are of the forms∆u0 f (z)
and ∆ρ0 f (z), where∆u0 and ∆ρ0 are the velocity and den-
sity changes across the interficial layer andf (z) is a hyper-
bolic function, and if(∂u/∂z)|z=0 = 1 and (∂ρ/∂z)|z=0 = 1,
wherez = 0 is the central line of the sheared/stratified layer,
thenRig(z) is determined by,

Rig(z) =
N2
∗ (z)

(∂u∗/∂z∗)2
= J

−(∂ρ/∂z)

(∂u/∂z)2
. (24)

in whichJ = gL/(ρ̄V 2
c ) = 1/(ρ̄Fr2) is a dimensionless number,

which has the same form as the bulk Richardson number of the
flow and was introduced and used by Hazel [1] for PSS flows.
As a result,J will replaceRig to become the dominant parameter
for the CSS flows.

Methodology

The temporal mode of (21), where the wavenumbersα andβ
are fixed as real numbers andc is fixed as a complex number,
is solved in this study in order to compare with the temporal
mode analysis results on PSS flows by Hazel [1]. The matrix
methods are used to solve the eigenvalue problems formed by
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Figure 1. Contours of̃σ in the J − α̃ plane for the cross free sheared
flows with (a) ξ = 0; (b) ξ = 0.5; and (c) ξ = 1.0, respectively.
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Figure 2.Rig,cr plotted againstξ for the cross free shear flows atα̃= 0.5.
The dash curve denote the parabolic correlation curve.

discretising (21) with uniform grids and using the second-order
central difference scheme. The QZ algorithm integrated in the
LAPACK routine CGGEV is used as the complex eigenvalue
solver. The characteristic length scaleL is selected as one half
of the sheared layer thickness and the maximum velocity in the
computational domain is chosen as the characteristic velocity
scaleVc. For all three types of CSS flows studied, the boundary
conditionsu = w = v = b = 0 are applied at both the top and
bottom boundaries.z varies between -5 and 5, same as that
used by Hazel [1].

Results

Cross Free Sheared Flow

For cross free shear flows, the following typical hyperbolic
functions are selected as the basic flow profiles,

U = tanh(z), V = ξtanh(z), N2 = J sech2(z), (25)

whereU , V , N2 andξ are all dimensionless properties following
the definitions of the previous section.

The stability analysis results for cross free sheared flows ob-
tained by solving (21) with the matrix methods are presented in
figure 1 where the contours ofσ̃ are plotted in theJ−α̃ plane for

the cross free shear flows withξ =0, 0.5 and 1.0, respectively.
As the stability boundary with̃σ = 0 requires the matrix meth-
ods to use prohibitively large node numbers to obtain accurate
solutions and the contour curve forσ̃ = 0.01 is found to be al-
most the same as that forσ̃= 0 for PSS flows, thẽσ = 0.01 con-
tour curve is thus approximated as the stability boundary for the
unstable mode region. For the pure PSS flow case withξ = 0 as
shown in figure 1(a), the stability boundary follows exactly the
same shape as that obtained by Hazel [1] with shooting meth-
ods. The critical local Richardson numberRig,cr, which corre-
sponds to the location for the maximum̃σ in the J − α̃ plane,
is close to, but less than, 0.25, the classic Miles-Howard theo-
rem value. It is noted that all the solutions ofσ̃ involve only the
real part, indicating that the instability mode corresponds to the
stationary wave mode where the instability will not propagate
and detach the basic mean flow. In PSS flows, such a station-
ary wave mode corresponds to the Kelvin-Helmholtz instabil-
ity. Similarly, only stationary solutions are obtained for all CSS
flow cases considered. Nevertheless, it is interesting to note that
all σ̃ contour curves withξ = 0.5 andξ = 1.0 stretch towards
positiveJ compared to those withξ = 0. The extent of stretch-
ing is dependent onξ, with the contour curves atξ = 1.0 cov-
ering a larger region than theξ = 0.5 case. A similar stretching
behavior is also found for CSS flows with otherξ values in the
range 0≤ ξ ≤ 1. Such a stretching effect increases notably the
magnitude of̃σ near the core of the stability curves,e.g.whenξ
is increased from 0 to 0.5 and to 1.0,σ̃ at the center increases
from about 0.24 to 0.28 and to 0.32, respectively. More im-
portantly, the increasingξ expandsRig,cr to be far beyond the
classic value of 0.25. For example, whenξ = 0.5, Rig,cr = 0.53;
but if ξ is increased to 1.0,Rig,cr will increase to approximately
1.0 as well.

In order to quantify the dependence onξ of such a stretching
effect, figure 2 presents the calculatedRig,cr plotted againstξ
over 0≤ ξ ≤ 1.0 for α̃ = 0.5, which demonstrates that the cor-
relation betweenRig,cr andξ is a parabolic one. In some exper-
imental studies and three-dimensional numerical simulations,
occasional violations of the Miles-Howard theorem have been
observed. It is noted thatRig,cr = 0.25 in figure 2 corresponds
to ξ ≈ 0.1 and whenξ is increased beyond 0.1,Rig,cr will be
further increased to be higher than the classic value of 0.25.
Hence, it is highly possible that these violations of the classic
Rig,cr = 0.25 value are caused by the inevitable local cross shear
in the three-dimensional instability.

Cross Bounded Sheared Flow

On the basis of the free shear profiles (25), the cross bounded
shear flows have the following profiles,

U = sin(z), V = ξsin(z), N2 = J. (26)

These profiles include the modifications from the solid bound-
ary and are of the same forms as to those used by Hazel [1].

The obtained stability analysis results for cross bounded
sheared flows are presented in figure 3. Compared to the cross
free shear flows, the peak ofσ̃, whose location corresponds to
Rig,cr, moves towards the largestα̃, at α̃ ≈ 0.8. Similarly, as
shown in figure 4 for̃α = 0.8, Rig,cr increases withξ, again in
a parabolic fashion.

Cross Free Jet Flow

The basic cross jet flows have the following profiles,

U = sech(z), V = ξsech(z), N2 = J. (27)

The profiles forU andN are in the same forms as that used in [4]
which are also similar to those used by Hazel [1]. The obtained
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Figure 3. Contours of̃σ in theJ− α̃ plane for the cross bounded sheared
flows with (a) ξ = 0; (b) ξ = 0.5; and (c) ξ = 1.0, respectively.
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Figure 4.Rig,cr versusξ for the cross bounded sheared flow atα̃ = 0.8.
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Figure 5. Contour plot of̃σ at (a)ξ = 0, (b)ξ = 0.5 and (c)ξ = 1.0 for
the cross jet flow.
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Figure 6.Rig,cr versusξ for the cross free jet flow at̃α = 0.5.

stability analysis results for cross free jet flows are presented in
figure 5. For each̃σ value, there are two peaks, and this study
only examines the peak corresponding to the ‘varicose mode’ at
a smaller wavenumber. The readers are referred to [4] for more
information about the stability features of jet flows. A similar
stretching effect observed for the other two types of CSS flows
is also observed for the cross free jet flows. And again, as shown
in figure 6 for α̃ = 0.5, Rig,cr for the varicose mode increases
with ξ, also in a parabolic fashion.

Conclusions

With the introduction of the shear stress ratioξ, linear perturba-
tion equations are derived for CSS flows to obtain their stability
features with comparable streamwise and spanwise velocities
in the basic flow states. With the derived perturbation equa-
tions, the stability features of a cross free sheared flow, a cross
bounded sheared flow, and a cross jet flow with specific veloc-
ity and stratification profiles are obtained. It is found that the
unstable regions of all these three types of CSS flows stretch
towards large values of the local Richardson numberRig with
the introduction of the spanwise velocity, and the growth rate of
the perturbation increases significantly whenξ increases. As a
result of such a stretching effect, the stability boundary in terms
of the critical local Richardson numberRig,cr expands with in-
creasingξ and exceeds the classic Miles-Howard theorem value
of Rig,cr = 0.25.
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