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Abstract

A novel extension to the similarity-based form of the trans-

port equation for the second-order velocity structure function

of 〈(δq)2〉 along the jet centreline has been obtained. This new

self-similar equation has the desirable benefit of requiring less

extensive measurements to calculate the inhomogeneous (decay

and production) terms of the transport equation. The validity of

this equation is first investigated via cross-wire measurements.

Then, this equation is used as a energy scale budget equation to

quantify the effect of initial conditions on all scales of a round

free jet flow on its centreline. In the current study, the initial

conditions of the jet are changed by using a passive grid posi-

tioned inside the shear layer near to the exit. It is found that

initial conditions affect the virtual origin of the jet as well as

the power-law exponent of turbulent kinetic energy. The effect

of initial conditions on the turbulent energy scale budget equa-

tion is restricted to the inhomogeneous large-scale terms of the

transport equation, while the diffusion term remains unaffected.

Introduction

Kolomogorov [1] in 1941 derived an important exact relation

between the second- and third-order moments of the longitudi-

nal velocity increment (known as Kolmogorov’s 4/5 law) from

the Navier-Stokes equations assuming a very high Reynolds,

homogeneity and isotropy as

−〈(δu)3〉+6ν
d

dr
〈(δu)2〉=

4

5
〈ε〉r , (1)

where δu ≡ u(x+ r)− u(x) is the longitudinal velocity incre-

ments (for the streamwise velocity component u), r is the dis-

tance between two points considered along the x direction and

ν is the kinematic viscosity. Here, 〈ε〉 is the mean dissipation

rate of turbulent kinetic energy defined as
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Equation (1) implies that at a scale r, the dissipation of turbulent

kinetic energy is the sum of turbulent advection (first term left-

hand side in (1)) and molecular diffusion (second term left-hand

side in (1)).

However, the assumption that the Reynolds number should be

very large is obviously not realized in practical flows (encoun-

tered in the laboratory conditions). Typical values of Taylor

Reynolds number, Reλ, in laboratory experiments such as gird

turbulence and jet flows are of the order of 102 - 103, while a

proper inertial range is unlikely to be established for Reλ ≤ 104

(e.g., [2], [3]). For such low Reλ, the effect of the initial condi-

tions may persist in space or time. This possibility has impor-

tant implications when experimental data are used to either test

theories or apply turbulent models to engineering flows. There-

fore, one may expect that (1) cannot to be balanced for low Reλ

flows. As such, Danaila et al. [4] derived a energy scale bud-

get equation (for the total turbulent energy structure function

〈(δq)2〉 (= 〈(δu)2〉+ 〈(δv)2〉+ 〈(δw)2〉)) along the centreline

of a turbulent round jet, viz.
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Here, Uc is the local mean streamwise velocity along the cen-

treline, and s is a dummy separation variable. The third term on

the LHS of (3) reflects the inhomogeneity due to the streamwise

decay of 〈q2〉, which was introduced as a consequence of low

Re. The forth term on LHS of this equation represents the role

of the production.

However, in order to compute the inhomogeneous decay term

in (3), 〈(δq)2〉 has to be measured at different streamwise loca-

tions, which involves significant uncertainties associated with

the numerical differentiation of the data [5]. Therefore, the main

goal of the current work is to apply a novel similarity analysis

and introduce a self-similar form to (3). A particularly use-

ful feature of the this analysis is that it can reduce some of the

difficulties involved in the calculation of the ∂/∂x terms (pro-

duction and decay terms). As will be demonstrated, the terms

in energy scale budget equation can be studied if 〈(δq)2〉 and

mean velocity (Uc) only are measured at a single point, rather

than several points along the axis. The other goal of the cur-

rent work is to study the effect of initial conditions on different

energy terms in a round jet. The role of initial conditions on dif-

ferent classes of turbulent flows (e.g. grid turbulence, jet, wake)

is now well accepted and has been confirmed in many experi-

mental investigations. An effective way of changing the initial

conditions in turbulent jet flows is to use passive objects near

the exit. Sadeghi and Pollard [6] studied the effect of placing

a thin square ring inside the shear layer of a round free jet. It

was found that the stable vortex pairing of the shear layer mode

completely disappeared when the ring was introduced into the

shear layer. Eliminating the shear layer mode also affected the

characteristic length scales in the development region of the jet.

In this paper, the effect of introducing a passive ring on differ-

ent terms of the transport equation is investigated. Here, a self-

similar based form of the transport equation is first introduced

and validated. Then this equation is used as a tool to identify

scales affected by introducing the ring.

Similarity of energy structure function in turbulent jets

The concept of similarity, or self-preservation, which assumes

the flow scales with single velocity and length scales, has been

an important analysis tool in turbulence research. Following

the same procedure in [4], an equilibrium similarity has been

developed for the transport equation of the second-order energy

structure function of 〈(δq)2〉 along the centreline of a round tur-



bulent jet (3). The equilibrium similarity forms of the second-

and third- order structure functions of u, v and q are given by

f (r/λ) = 〈(δq)2〉/〈q2〉, (4)

e(r/λ) = 〈(δu)2〉/〈u2〉, (5)

h(r/λ) = 〈(δv)2〉/〈v2〉 (6)

and

g(r/λ) =−〈(δu)(δq)2〉/(3−1/2Re−1
λ

〈q2〉3/2), (7)

respectively. Here, g is the normalized third-order structure

function and f , e and h are the normalized second-order struc-

ture functions. Assuming axisymmetry, 〈q2〉= 〈u2〉+2〈v2〉. It

should be noted that the accuracy of this assumption has been

confirmed in both on and off the centreline of round jets [7]. The

general definitions of Taylor microscale and Taylor microscale

Reynolds number are

λ2 = 5ν
〈q2〉

〈ε〉
, (8)

and

Reλ =
〈q2〉1/2λ

31/2 ν
, (9)

respectively [8].

One possible equilibrium similarity solution of Equation (3) is

a power-law of the form

〈q2〉= A(x− x0)
m, (10)

where x0 is the virtual origin, m is the power-law exponent and

A is a constant of proportionality. The same power-law behavior

is also suggested for 〈u2〉 and 〈v2〉 as

〈u2〉= A1(x− x0)
m,〈v2〉= A2(x− x0)

m. (11)

The virtual origin follows from the variation of the mean veloc-

ity along the centreline, viz.

Uc =C/(x− x0), (12)

where C is a constant. For the region near the axisymmetric jet

centreline, the kinetic energy budget equation is approximated

as

〈ε〉=C

[

−(A1 +2A2)m

2
+(A1 −A2)

]

(x− x0)
m−2. (13)

The similarity form of (3) follows after substituting (4)-(13) into

(3), viz.
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where Γ1, Γ2, Γ3 and Γ4 are given by

Γ1 =
∫ r/λ

0

( s

λ

)3 d f

d(r/λ)
d
( s

λ

)

, Γ2 =
∫ r/λ

0

( s

λ

)2
f d

( s

λ

)

,

Γ3 =
∫ r/λ

0

( s

λ

)2
e d

( s

λ

)

, Γ4 =
∫ r/λ

0

( s

λ

)2
h d

( s

λ

)

.

Here, c1 =
A1

−Am+2(A1−A2)
and c2 =

A2

−Am+2(A1−A2)
.

Dividing by (20/3)r/λ, (14) can be rewritten symbolistically as

A∗+B∗+D∗+P∗ =C∗, (15)

where A∗ is the turbulent advection term (the first term in (14)),

B∗ is the diffusion term (the second term in (14)), D∗ is the in-

homogeneous decay term along streamwise direction x (the sum

of third and forth terms in (14)), P∗ is the production term (the

sum of fifth and sixth terms in (14)) and C∗ is the balance of all

other terms. The accuracy of this new equation is first verified

by using cross-wire data. Then, the effect of introducing a pas-

sive ring into the jet shear layer on each term of the transport

equation is investigated.

Experimental details

An air jet was generated using a fan mounted on anti-vibration

pads. The air then exits a settling chamber via a round duct to

the inlet of a smoothly contracting axisymmetric nozzle with

exit diameter D = 73.6 mm. A wire ring, with square cross-

section, of side h = 1.5 mm, and outer diameter Dwire = 71.6
mm was placed at a stand-off distance (to the ring leading edge)

downstream of the jet nozzle exit plane x/D = 0.03. The ring

was supported by three prongs (1.5 mm square, and length 2.2

mm) located at 120 degrees intervals. More details about the

current experimental setup can be found in [3] and [6]. The

experiments were carried out at the exit Reynolds number of

ReD = 50,000, where ReD is calculated based on the jet exit

mean velocity (U j=10.65 m/s) and the nozzle exit diameter.

The measurements were performed for 10 ≤ x/D ≤ 20, where

x is the downstream location, along the jet centreline. Mea-

surements of the turbulence statistics were obtained using a sta-

tionary cross-wire probe. The wires were made of of 2.5 mi-

cron diameter tungsten wire with a 0.5 mm sensing length. The

cross-wire was calibrated using a look-up table, with calibration

angles within the range ±40, in intervals of 10◦. The signals

were low-pass filtered at a cut-off frequency fc, which was se-

lected based on the onset of electronic noise and close to the

Kolmogorov frequency, fk ≡ U/2πη, where η ≡ ν3/4/〈ε〉1/4.

The measurements were taken with a sampling frequency of

fs ≥ 2 fc.

Basic characteristics

The axial mean velocity along the jet centreline is presented in

Figure 1. For a self-similar jet, the centreline velocity variation

is given by

U j

Uc
=

1

B

(

x− x0

D

)

. (16)

A least-squares fit to the data gives the mean velocity decay

constant of B = 6.6 and the virtual origin of x0 = −1.69D for

the unmodified jet (without the ring), and B= 6.3 and the virtual

origin of x0 = 0.47D for the modified jet (with the ring). This

confirms the significant effect of initial conditions on the mean

decay constant and virtual origin in jet flows. A few other basic
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Figure 1: Axial decay of the mean velocity along the centreline

(U j=10.65 m/s). Solid line is the least squares fit to the data.

quantities measured at three selected axial locations for both

with and without the ring cases are summarized in Table 1 for

reference. Here, 〈ε〉hom is

〈ε〉hom = 3ν

[〈

(

∂u

∂x

)2
〉

+2

〈

(

∂v

∂x

)2
〉]

. (17)

λhom is calculated by replacing 〈ε〉hom into (8). Reλ is obtained

from (9) using λhom.

Similarity solutions

The streamwise variation of 〈q2〉, measured along the jet cen-

treline and normalised by U2
j , for both with and without the ring

cases are shown in Figure 2. A curve fit was applied to the data

using the virtual origin of x0 = −1.69D for the unmodified jet

and x0 = 0.47D for the modified jet. It was found that 〈q2〉
follows closely a power-law with exponent m = −1.83 for the

unmodified jet and m=−1.44 for the modified jet with the ring.

This confirms the validity of (10) for jet flows regardless of the

nature of initial conditions. The effect of initial conditions can

be observed in the value of power-law exponent (m). Distri-

butions of f (r/λ) measured at the three locations considered

here (x/D = 10, 15 and 20) are shown for both jets in Figure

3. λhom is used since the assumptions employed for its esti-

mate are less restrictive than the alternatives estimates given the

available measurements. The second-order structure functions

of q are found to collapse approximately at each streamwise lo-

cation.

Energy scale budget equation

Validation of the energy scale budget equation

First, in order to illustrate the validity of (14), the term g(r/λ)
is calculated from this equation (14) using the correspond-

ing power-law exponents m and the decay rates A1 and A2 at

x/D = 15 (identified as gc) and compared with the measured

profile of g(r/λ) (denoted by gm) in Figure 4 for both modi-

fied and unmodified jets. A relatively good agreement (within

±12%, similar to results from grid turbulence experiments) is

found between gm and gc for both cases. Note that the nor-

malised third-order structure functions are divided using r/λ so

that their maximum peaks can be compared with the onset of

the inertial range. It can be observed that the asymptotic value

of 20/3, which represents the onset of the inertial range for a

high Reynolds number, is significantly higher than the maxi-

mum measured and calculated g. Sadeghi et al. [3] showed that
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Figure 2: Streamwise variation of 〈q2〉 along the centreline. The

solid lines are the least squares fits to the data.
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Figure 3: Distributions of f (r/λhom) at three axial locations of

x/D= 10,15,20. Structure functions for with the ring case have

been shifted successively (offset 2) with respect to the lower

one. Each horizontal dashed line is 2.

a proper inertial range is unlikely to be established along the jet

axis unless a very high Reynolds number of Reλ = 104 can be

reached.

The effect of the initial conditions on the budget terms

Equation (15), which is a normalised form of (14), is used as a

scale-by-scale budget to quantify the effect of initial conditions

on all scales of a round free jet flow on its centreline. The scale-

by-scale budget terms, measured at x/D = 15 on the centreline

and ReD = 50,000, are given in Figure 5. This figure demon-

strates that (15) is adequately satisfied by the experimental data

(0.88 ≤ C∗ ≤ 1.12) for nearly all scales of the jet flows on the

centreline. For both jets, at small separations, the diffusion term

B∗ dominates, while at large separations, the decay term D∗ and

the production term B∗ are the dominant terms. The advection

term A∗ goes to zero at both very small and large separations,

while its maximum is located at nearly the same location for

both modified and unmodified jets ( r ≃ 0.8λ). Direct compar-

ison of each term for the modified and unmodified jet indicates

that B∗ is nearly unaffected by the use of the ring. The impact of

the initial condition can be observed mainly on the large scales

for P∗ and D∗. The magnitude of A∗ is higher for the modified

jet, which can be related to the increase in turbulent Reynolds

number.



Unmodified jet (no ring) Modified jet (with ring)

x/D 〈ε〉hom λhom Reλ η x/D 〈ε〉hom λhom Reλ η

(m2s−3) (mm) (mm) (m2s−3) (mm) (mm)

10 33.9 3.15 241 0.11 10 42 3.11 262 0.098

15 9.30 4.35 241 0.15 15 13.7 4.06 254 0.13

20 3.40 5.62 243 0.19 20 5.89 4.98 252 0.16

Table 1: A few basic parameters at three downstream locations along the jet centreline for both modified and unmodified jets.
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Figure 4: Comparison between measured (triangles) and calcu-

lated (solid line) distributions of g divided by r/λhom(at x/D =
15). Structure functions for with the ring case have been shifted

successively (offset 20/3) with respect to the lower one. Dashed

line is 20/3.

Conclusion

The effect of initial conditions has been studied in a around jet

flow on its centreline with the help of the transport equation

for the second-order velocity structure function of 〈(δq)2〉. To

achieve this, a fine ring, with square cross-section, was designed

and placed very close to the jet exit (x/D = 0.03). We have

first developed a similarity-based form of the transport equa-

tion for the second-order velocity structure functions of 〈(δq)2〉.
This new self-similar equation has the desirable benefit of re-

quiring less extensive measurements to calculate the inhomoge-

neous (decay and production) terms of the transport equation. It

was found that the self-similar form of the transport equations

yield to a solution where the turbulent kinetic energy decays

following a power-law of the form 〈q2〉 ∝ (x− x0)
m along the

centreline. Experiments were performed to verify the similar-

ity solutions and investigate the effect of initial conditions. It

was found that power-law decay regions exist over the present

range of measurements for 〈q2〉 with substantially different ex-

ponents, m, for the modified and unmodified jets. It was shown

that the distributions of 〈(δq)2〉, when normalised by 〈q2〉 and

λ, satisfied similarity to a close approximation over all range

of scales for both unmodified and modified jets. Allowing for

experimental uncertainty, the calculated and measured distri-

butions of the normalised third-order structure functions were

found in a good satisfactory in (14). The energy scale budget

equation of (14) has been used to study quantitatively the ef-

fect of initial conditions on the different scales of the jet flow

on its centreline. The impact of initial conditions was mainly

observed on the inhomogeneity large-scale terms, however, the

diffusion term remained nearly unchanged.
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