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Abstract 

In this paper we investigate theoretically the unsteady boundary 

layer flow and heat transfer over a permeable shrinking sheet 

with non-uniform heat source. The nondimensional governing 

equations have been solved numerically using the bvp4c function 

from Matlab for different values of the pertinent parameters; 

shrinking parameter  , suction parameter S , unsteadiness 

parameter  , space dependent heat source parameter A , and 

temperature dependent heat source parameter B , keeping Prandtl 

number Pr fixed. Numerical results are obtained for the reduced 

skin-friction and heat transfer and for the velocity and 

temperature profiles. The results indicate that dual solutions exist 

for a  shrinking ( 0  ) sheet for certain values of the parameter 

space. The results show that unsteadiness significantly controls 

the flow and heat transfer characteristics. 

 

Introduction  

During the past few decades, the analysis of boundary layer flow 

of viscous fluids due to stretching/shrinking surfaces has 

important applications in engineering processes and polymer 

industry. Examples of such technological processes concerning 

polymers include cooling of continuos strips or filaments, glass 

blowing, continuos stretching of plastic films, artificial fibres, 

continuos casting of metals and spinning of fibers, hot rolling, 

wire drawing, glass fibre, paper production, etc. Crane [1] was 

the first who has studied the viscous fluid subject to a stretching 

surface. He obtained an exact and closed form similarity solution. 

Gupta and Gupta [2] discussed the heat and mass transfer due to 

a porous stretching sheet. They presented the analysis for both 

suction and blowing cases. Banks [3] presented a class of 

similarity solutions depending upon a parameter for the boundary 

layer equations due to a stretching wall. The existence and 

uniqueness of stretching flow is discussed by Mecleod and 

Rajagopal [4]. In recent years, the Crane’s problem [1] is 

extended to discuss the various aspects of the flow and heat 

transfer characteristics with linear and power-law surface 

velocities by many authors (Liao and Pop [5], Ishak et al. [6]). 

The review paper by Wang [7] presents comprehensive 

discussions of the published work on similarity stretching exact 

solutions of the Navier–Stokes equations. Further, it seems that 

Miklavčič and Wang [8] are the first who have studied the 

shrinking sheet problem, where the velocity on the boundary is 

towards a fixed point. From physical grounds vorticity of the 

shrinking sheet is not confined within a boundary layer, and the 

flow is unlikely to exist unless adequate suction on the boundary 

is imposed. This new type of shrinking sheet flow is essentially a 

backward flow as discussed by Goldstein [9]. The flow induced 

by a shrinking sheet shows physical phenomena quite distinct 

from the forward stretching flow.   

The unsteady viscous flow over a stretching/shrinking surface  

has been also studied by several authors and we mention here 

Surma Devi et al. [10] and Fang et al. [11]. Zheng et al. [12] have 

studied the boundary layer flow and heat transfer on a permeable 

unsteady stretching sheet with non-uniform heat source/sink. The 

analytic solutions are obtained by using suitable similarity 

transformations and homotopy analysis method (HAM). The 

effects of unsteadiness parameter, Prandtl number and heat 

source/sink parameter on the flow and heat transfer 

characteristics are analyzed and discussed. The purpose of the  

present paper is to extend the paper by Zheng et al. [12] to the 

case of a shrinking sheet. Numerical techniques are used to solve 

the similarity equations for different values of the governing 

parameters. Results show that multiple (dual) solutions exist for a 

certain range of mass suction and unsteadiness parameters. Quite 

different flow behaviour is observed for an unsteady shrinking 

sheet from an unsteady stretching sheet. To our best of 

knowledge this problem has not been considered before, so that 

the reported results are new and original. 
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Figure 1. Geometry of the problem 

Basic Equations 

Consider a two-dimensional boundary layer flow over an 

unsteady continuously  shrinking sheet in a quiescent viscous and 

incompressible fluid, as is shown in Fig. 1, where x  and y  are 

Cartesian coordinates measured along the shrinking surface and 

normal to it, respectively. It is assumed that the 

stretching/shrinking velocity is ( , )w wu U x t , where   is a 

constant with 0   corresponds to a stretching sheet and 0   

corresponds to a shrinking sheet, respectively. The surface 

temperature and the mass transfer velocity are ( , )wT x t  and 

( , )wv x t , which will be defined later. Under the boundary layer 

assumption, the basic equations of this problem can be written as 

(see Zheng et al. [12]) 
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where u  and v  are the velocity components along the x   and 

y   axes, T  is the fluid temperature, t  is time, k  is the 

thermal conductivity,   is the kinematic viscosity,   is the 

density, T
 is the constant temperature of the ambient fluid and 

pC  is the specific heat at constant pressure.  

In order that Eqs. (1) to (3) subject to the initial and boundary 

conditions (4) admit similarity solutions, we assume that 

( , ), ( , ), ( , )w wu x t v x t T x t  and '''( , )q x t  have the following form                 
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where a  is a positive constant,   is a parameter showing the 

unsteadiness of the problem, S  is the mass transfer parameter, 

with 0S   for suction and 0S   for injection, respectively,  A  

is the coefficient of the space-dependent and B  is temperature-

dependent heat source or sink parameter. Note that 0, 0A B   

correspond to internal heat sink, and 0, 0A B   correspond to 

internal heat source. Having in view (5), we assume that the 

following similarity variables can be considered:                   
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where   is the stream function, which is defined in the usual 

way as /u y    and /v x   . 

Substituting (6) into Eqs. (2) and (3), we get the following 

ordinary differential equations 
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subject to the boundary conditions 
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where primes denote differentiation with respect to   and 

/ a   is the unsteadiness parameter. For the present work, 

we assume a decelerating shrinking sheet with 0  . 

The physical quantities of interest are the skin friction coefficient 

fC and the local Nusselt number xNu , which are defined as 

      2/ , / ( )f w w x w wC U Nu xq k T T                  (10) 

where w  is the skin friction or shear stress along the surface of 

the sheet and wq  is the heat flux from the surface of the sheet, 

which are given by 
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Using the similarity variables (6), we obtain 
1/2 1/2Re ''(0), Re '(0)x f x xC f Nu        (12) 

where Re /x wU x   is the local Reynolds number. 
 

Numerical Techniques 

Following Rahman et al. [13-14], the system of ordinary 

differential equations (7)-(8) subject to the boundary conditions 

(9) are solved numerically using the function bvp4c from Matlab 

for different values of the parameters The numerical simulations 

are carried out for various values of the physical parameters such 

as shrinking parameter  , suction parameter S , unsteadiness 

parameter  , space dependent heat source parameter A , 

temperature dependent heat source parameter B  and  Prandtl 

number Pr .  Because of almost lack of the experimental data, the 

choice of the values of the parameters was dictated by the values 

chosen by previous investigators. The value of the Prandtl 

number is set equal to 0.71 which corresponds to air at room 

temperature, throughout the paper unless otherwise specified. 

The values of the other parameters are mentioned in the 

description of the respective figures. The code bvp4c is 

developed using finite difference method that implements the 

three-stage Lobatto IIIa formula, which is a collocation method 

with forth-order accuracy. In this approach, the ordinary 

differential equations (7)-(8) are reduced to a system of first-

order by introducing new variables. The mesh selection and error 

control are based on the residual of the continuous solution.  The 

relative error tolerance has been set to 10-7. Because the present 

problem may have more than one solution (dual, upper and lower 

branch solutions), a ‘good’ initial guess is necessary. The 

‘infinity’    in the boundary condition (9) is replaced by a 

finite value   . We started the computation at small value, 

for example, 5  , then subsequently increased the value of   

until the boundary conditions are verified. In this method, we 

have chosen a suitable finite value of   , namely 

20    for the upper branch (first) solution and    in 

the range 40-60 for the lower branch (second) solution. Examples 

of solving boundary value problems by bvp4c can be found in the 

book by Shampine et al. [15].  

We notice that Eq. (7) subject to the boundary conditions (9) 

reduce to Eq. (6) from Fang et al. [16] when 1    (shrinking 

sheet). We also notice that Eq. (8) subject to the boundary 

conditions (9) reduce to Eq. (9) from Zheng et al. [12] when 

1  . It is good to mention that Eq. 2 0f f f f      

together with the boundary conditions (0) 0f  , (0) 1f   , 

( ) 0f     possess exact solution ( ) 1f e     (Vajravelu [16]) 

that is unique. At 0  , (0) 1f     that exactly matches with 

our calculated value when 0   in Eq. (7) and 0S  , 1   in 

Eq. (9). It can further be noted that for 0   Eq. (8) exactly 

matches with Eq. (9) of Nandeppanavar et al. [17] when 

1n    in their model. Considering Pr 1 , 0.1A B   they 

have calculated (0) 0.864169   which is in very good 

agreement with our calculated value 0.86423064 when 0S  , 

1  , 0  , Pr 1 , 0.1A B  . The afore-mentioned results 

give us confidence to use the present numerical code. 

 

Results and Discussion 

The numerical simulation of Eqs. (7) to (8) subject to the 

boundary conditions (15) are carried out for various values of the 

physical parameters S ,  ,  , A , B  and   for obtaining the 

condition under which the dual (upper and lower branch) 

solutions for the unsteady flow over a shrinking sheet may exist. 

In Figs. 2 to 7, we have investigated the variation of the reduced 

skin friction coefficient 1/2Re ''(0)x fC f , and the local Nusselt 

number or reduced heat transfer from the surface of the sheet 
1/2Re '(0)x xNu    to the fluid for different values of s ,  , 

and   keeping the values of the other parameters  0.2A B  , 

and Pr 0.71  fixed. These figures show that the number of 

solutions depend on the suction parameter S , unsteadiness 



parameter  , and shrinking parameter  . From Figs. 2 and 3 we 

notice that for a shrinking sheet ( 1   ) there are two solutions 

(dual) when 
c sS S S   where 2.1106cS   and 2.5110sS   

are respectively the critical suction parameters corresponding to 

the upper and lower branch solutions. Here the solid line 

represents the upper branch solution whereas the dotted one for 

the lower branch solution. For 
cS S  there exists no solution at 

all whereas at 
cS S  there is only one solution. On the other 

hand for 
sS S , we found only the upper branch solution. The 

upper branch solution increases with the increase of S  whereas 

the lower one decreases with the increase of S . Miklavčič and 

Wang [8] have studied the steady viscous (Newtonian) fluid 

flows over a permeable linearly shrinking surface and have 

shown that suction at the wall will generate dual solutions only 

when the suction parameter S  is greater than or equal to 2. It is 

good to mention that Miklavčič and Wang [8] have identified 

only 
cS  but not 

sS . Our calculated value of 2.1106cS   is 

slightly higher than the value of Miklavčič and Wang [8]. We 

have investigated these features (higher 
cS  and existence of 

sS ) 

in details and identified that unsteadiness is the factor behind 

these. 
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Figure 2. Values of (0)f   

versus S  when 1   , 

2   , 0.2A , 0.2B  , and 

Pr 0.71 . 
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Figure 3. Values of (0)  

versus S  when 1   , 

2   , 0.2A , 0.2B  , and 

Pr 0.71 . 
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Figure 4. Values of (0)f   

versus   when 1   , 

2.2s  , 0.2A , 0.2B  , and 

Pr 0.71 . 
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Figure 5. Values of (0)  

versus   when 1   , 

2.2s  , 0.2A , 0.2B  , and 

Pr 0.71 . 

 

In Figs. 4 and 5 we have plotted the values of (0)f   and (0)  

against   for a shrinking sheet ( 1   ) when 2.2S  , 

0.2A B  and Pr 0.71 . Here we identified the critical c  for 

the existence of the dual solutions. These figures indicate that 

dual solutions exist when 8.3483 0c     . At c   there 

exists only one solution whereas for c   no solution can be 

found. The reduced skin friction coefficient increases with the 

increase of the unsteadiness parameter for both the upper and 

lower branch solutions. For the upper branch solution these 

values are higher than those of the lower branch solution. For the 

upper branch solution the reduced Nusselt number increases with 

the increase of  . On the other hand the reduced Nusselt number 

for the lower branch solution shows some unusual oscillation. 

Rahman et al. [14] done the stability analysis for a nanofluid flow 

and found that the upper branch solution is stable and physically 

acceptable whereas the lower branch solution is unstable and 

physically not acceptable. This result is well established and has 

not been repeated here for brevity. 
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Figure 6. Values of (0)f   

versus   for different values of 

s  when 0.2A , 0.2B  , and 

Pr 0.71 . 
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Figure 7. Values of (0)  

versus   for different values of 

s  when 0.2A , 0.2B  , and 

Pr 0.71 . 

 

The variations of (0)f   and (0)  against   for different 

values of S  are depicted in Figs. 6 and 7, respectively when 

2   , 0.2A B  , and Pr 0.71 . In these figures we have 

calculated the critical   for various values of S . From these 

figures we notice that, there are two solutions when c s    , 

one solution when c   and 
s  , and no solution when 

c  , where c  and 
s  are the critical values of   

corresponding to the upper and lower branch solutions. Thus, for 

c   the full Navier-Stokes equations and energy equation 

need to be solved.  The critical values of 
c  are 1.0916 , 

1.1989 , 1.4291  for 2.2s  , 2.3, 2.5 while the corresponding 

s   are 0.8 , 0.8582 , 0.9914 . Thus, both | |c  and | |s  

increases with the increase of S  that is application of suction at 

the surface broadens the solution space for the existence of the 

dual solutions. The values of (0)f   and (0)  increase with 

the increase of S  for the upper branch solution whereas they 

decrease for the lower branch solution for the increase of S . We 

also notice that for a fixed value of the other parameters the 

reduced skin friction coefficient for the upper branch solution 

first increases with the increase of   within the region 

1(say)c     then it decreases with the further increase of  . 

On the other hand values of (0)f   decrease with the increase of 

  for the lower branch solution. Figure 7 depicts that values of 

(0)   for the upper branch solution increase with the increase 

of   whereas for the lower branch solution these values decrease 

with the increase of  .  
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Figure 8. Temperature profiles 

for different values of A  when 

1   , 2   , 2.2s  , 

0.2B  , and Pr 0.71 . 
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Figure 9. Temperature profiles 

for different values of B  when 

1   , 2   , 2.2s  , 

0.2A , and Pr 0.71 . 

 

The effects of the space dependent heat source parameter A  and 

the temperature dependent heat source parameter B  on the 

nondimensional temperature profiles are depicted in Figs. 8-9, 

respectively. Figure 8 reveals that nondimensional temperature 

profiles decrease hence the thickness of the thermal boundary 

layer also decrease with the increase of A . On the other hand an 

opposite behavior of B  on the temperature profiles is observed 

as can be seen from Fig. 9. Owing to the presence of temperature 

dependent heat generation it is apparent that there is an increase 

in the thermal state of the fluid. Hence from Fig. 9 we observe 

that temperature increases as ( 0)B   increases. 
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Figure 10. Velocity profiles for 

different values of   when 

1   , 2.2s  , 0.2A B  , 

and Pr 0.71 . 
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Figure 11. Velocity profiles for 

different values of   when 

1   , 2.2s  , 0.2A B  , 

and Pr 0.71 . 
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Figure 12. Velocity profiles for 

different values of S  when 

1   , 2   , 2.2s  , 

0.2A , 0.2B  and Pr 0.71 . 
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Figure 13. Temperature profiles 

for different values of S  when 

1   , 2   , 2.2s  , 

0.2A , 0.2B  and Pr 0.71 . 

 

The effect of the unsteadiness parameter for a decelerating 

shrinking sheet ( 0  ) on the velocity and temperature 

distributions are shown in Figs. 10-11, respectively. Figure 10 

shows that fluid velocity near the surface of the sheet increases 

with the increase of the magnitude of   for both the upper and 

lower branch solutions. But away from the surface of the sheet 

where inertia forces are dominant compared to the viscous forces 

these profiles overlap. For sufficiently large | |  boundary layer 

separates from the surface of the sheet for the lower branch 

solution as a consequence back flow occurs. The temperature of 

the fluid within the boundary layer for the upper branch solution 

increases near the surface of the sheet with the increase of | |  

(Fig. 11). Away from it these profiles overlap and decrease with 

the further increase of | | . The temperature corresponding to 

the lower branch solution increases with the increase of | |  

throughout the boundary layer. Figure 12 further reveals that the 

dimensionless velocity profile ( )f   increases with the 

increasing values of the suction parameter for the upper solution 

branch and decreases with the suction parameter for the lower 

solution branch. It can be seen from Fig. 13 that temperature 

profiles ( )   decrease with the increase of  S  for an upper 

solution branch and increase for a lower solution branch. The 

thickness of the thermal boundary layer for upper solution branch 

is smaller than the corresponding thickness of the lower solution 

branch. It is good to mention that the maximum of the 

temperature profiles for the lower branch solution increases quite 

rapidly with the increase of S . Thus, Fig. 13 is plotted within 

0 ( ) 3    to magnify the solution as for large ( )   the 

difference among the solutions is in distinguishable. 

 
Conclusions 

From the numerical simulations the critical suction, unsteadiness, 

and shrinking parameters have been identified for the existence 

of the dual solutions. For c sS S S  , c s    , and c   

the solutions have two branches, namely, an upper branch and a 

lower branch. The existence of sS  and s  is due to the 

unsteadiness of the problem.  For a steady case 0s sS   . The 

unsteadiness significantly controls the flow and heat transfer 

characteristics. The upper branch solution is stable whereas the 

lower branch solution is unstable. The temperature dependent 

heat source parameter intensifies the fluid temperature whereas 

space dependent heat source parameter reduces it within the 

boundary layer. 
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