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Abstract

We investigate the behaviour of the ideal magnetohydrody-
namic (MHD) Richtmyer-Meshkov instability (RMI) in two-
dimensional implosions under the influence of uniform- and
saddle-topology seed magnetic fields. The RMI is a hydrody-
namic instability that, along with the Rayleigh-Taylor instabil-
ity, greatly limits the operating parameters of inertial confine-
ment fusion (ICF), a technology that has recently seen much
interest for its potential for energy production. The instability
arises when a perturbed density interface is impulsively acceler-
ated, for example by a shock wave, causing the perturbations on
the interface to grow as a result of baroclinic vorticity genera-
tion. Here we present case studies of the MHD RMI in converg-
ing two-dimensional geometry, in the presence of uniform- and
saddle-topology seed fields. We examine the shock refraction
process, identifying the waves that result from it, and determine
the growth rate of the RMI, comparing it to its behaviour in the
converging hydrodynamic (no-field) case. We drive the incident
shocks with a Riemann problem, and examine the RMI under
various perturbation wavenumbers and seed field strengths. The
shock refraction processes produce a collection of fast and sub-
fast MHD shock waves which carry vorticity along and away
from the interface perturbations, depending on the local field
orientation to the interface, supressing the instability but lead-
ing to slightly irregular perturbation shapes. These results en-
courage further research on the MHD RMI in converging flows,
with a strong potential for application to ICF experiments.

Introduction

Inertial Confinement Fusion (ICF) is a promising energy gen-
eration technique by which a millimetre-scale capsule, or tar-
get, filled with a deuterium-tritium fuel mixture is illuminated
by high-intensity radiation, which vapourises the shell material
and sends a spherical shock wave into the fuel, compressing it to
temperatures and pressures where nuclear fusion may occur [5].
Its operating parameters are however limited in part by the pres-
ence of hydrodynamic instabilities such as the Rayleigh-Taylor
and Richtmyer-Meshkov instability (RMI) [5].

The concept of applying a seed magnetic field to increase the
performance of ICF has seen recent investigation. There is some
evidence which suggests that applying a seed magnetic field to
an ICF target may increase the hot spot temperature and neu-
tron yield by means of electron confinement normal to mag-
netic field lines [2, 4]. Numerical results by Perkins et al. [11]
suggest further that the fusion yield from an ICF target can be
maintained at larger shell surface perturbation amplitudes in the
presence of increasing seed field strength; they also observe the
possibility of suppression of the Rayleigh-Taylor instability un-
der these seed fields.

There remains the potential of suppressing the RMI in ICF
by applying a seed magnetic field; its suppression is well-
documented under planar flows [8, 12, 13, 10, 15], but its be-
haviour in cylindrical or spherical converging MHD flows under

seed fields has to our knowledge yet to be investigated in detail.
The cylindrical and spherical converging RMI in hydrodynamic
(HD) flows is however well-understood [16], and the effect of
the seed field on the symmetry of an MHD implosion has seen
recent study [7].

In this study we present key examples of the converging cylin-
drical RMI under a single-mode sinusoidal initial perturbation
in a density interface under uniform and saddle seed field con-
figurations. These fields are examined respectively for their
physical plausibility and potential to preserve symmetry in the
converging flow. We characterise the types of waves formed by
the shock-interface interaction in the context of prior research,
and compare the growth of the interface perturbation amplitude
between field configurations and the HD case.

Formulation

The variables used in this study are non-dimensionalized thus:
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where x and t are position and time respectively; ρ is density,
p pressure, u velocity, B magnetic field, µ0 the permeability
of free space, and L0 is a reference length. 0-subscripts indi-
cate reference values. Thus, suppressing the carets for conve-
nience, we write the equations of ideal MHD [3], which govern
the physics of the problems in this study:

∂ρ
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ρ(
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+v ·∇v)+∇p− (∇×B)×B = 0, (3)

∂p
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∂B
∂t
−∇× (v×B) = 0, ∇ ·B = 0. (5)

The model is ideal, neglecting diffusion effects - since they oc-
cur over a much larger timescale than advection effects - and
gravity, and considers a continuous quasi-neutral single-fluid
plasma.

To reproduce the cylindrical RMI in the converging MHD
flow we define a two-dimensional (cylindrical) density interface
(DI), centred at the domain origin and perturbed with a single-
mode sinusoid, and accelerate it with a set of MHD shocks gen-
erated by a Riemann problem. See Figure 1 for the initial con-
ditions. The initial DI separates an outer low-density fluid from
an inner high-density fluid. We use a two-dimensional Carte-
sian domain, defined in x,y co-ordinates, around a z-axis. We
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Figure 1: Initial conditions in the computational domain for
cases C1 and C3 showing density field (darker is greater) with
overlaid magnetic field lines.

define the radius variable as r =
√

x2 + y2, with the polar an-
gle φ = arctany/x. The local angle between a wavevector and
the magnetic field is denoted θ. The plasma is modelled with a
specific heat ratio of γ = 5/3.

The density ratio across the DI is set to ρ1/ρ0 = 5, where ρ1 is
the density of the (inner) heavier fluid and ρ0 is the reference
density, set to the outer fluid. The DI is regularised with an
hyperbolic tangent function and has an initial interface profile
given by

ri(φ) = r0 +η0 cos(kφ), (6)

with k and η0 being the perturbation wavenumber and initial
amplitude respectively. The initial amplitude in this study is
set to 2% the wavelength λ, and we consider wavenumbers k =
16,64.

A Riemann problem describes the flow resulting from an ini-
tial discontinuous separation of two uniform states, and in con-
verging MHD flows thus produces a complete set of converging
fast and slow MHD shocks. We place the driving Riemann in-
terface (RI), also regularised and centred at the domain origin,
at rd = 1.6, providing a discontinuity in pressure and density.
The inside pressure and density are set to their respective ref-
erence values, p0 and ρ0. The outside pressure and density are
ρd = 3ρ0 and pd = 12.1p0 respectively.

As the measure of magnetic field strength we use β0I = 2p0/B2
0,

where the subscript I indicates the use of the reference pressure,
which exists inside the RI, and subscript 0 indicates the initial
value at the mean DI radius, r0. For this study we set β0I = 4.

Two kinds of magnetic field configurations are applied across
this domain denoted C1 and C3:

C1: Uni-direction field in cylindrical geometry
This is a uniform field, set to the reference strength:

B = B0êx. (7)

C3: Saddle field in cylindrical geometry
This field presents a saddle configuration in the domain and is
defined by:

B(x,y) =
4

∑
i=1

{
αiB0

(x− xi)2 +(y− yi)2[
−(y− yi)êx +(x− xi)êy

]}
, (8)

where αi = {+α0,−α0,−α0,+α0} is a signed scaling param-
eter that sets |B(r0)|= B0; and

(xi,yi) = {(10,10),(−10,10),(−10,−10),(10,−10)}.

Methodology

The flows are solved numerically with a second-order accurate,
non-linear compressible finite volume code developed by Sam-
taney [9] for solving the ideal MHD equations using a dimen-
sionally unsplit upwinding scheme and a Roe-type flux solver,
with a projection method used to enforce a solenoidal mag-
netic field. We use an adaptive mesh refinement scheme of the
Berger-Collela type under the Chombo framework.

The mesh is a uniform cartesian grid with an unrefined resolu-
tion of 2562 with three levels of refinement of ratio 2 in each
direction. The criterion for refinement is |∇ρ| > 0.02ρ on the
local ρ, so that the effective resolution is 20482 on the com-
pressible flow features. We discretize on a quarter-domain of
the flow, 0 < x,y < l where l = 3.

Results

Figure 2 shows the HD and MHD RMI, the latter in a config-
uration of C1 under a reference field strength β0I = 4, for a
wavenumber of k = 16 at some time after the initial shock has
processed the DI, visualising density gradient. The perturba-
tions on the DI have grown much more in the HD flow than in
the MHD flow, implying suppression of the RMI in the pres-
ence of a seed magnetic field. Note that while the perturbation
growth is axisymmetric in the HD case, it is not in the MHD
case, with the perturbations at polar angle φ = π/2 appearing
much flatter than at φ = 0. We will now characterise this flow
as a case study, and afterwards move onto additional formula-
tions to examine differences between initial wavenumbers and
field configurations.

The driving shocks are generated by the Riemann problem, and
are characterised according to previous study [6] - that is, mov-
ing from the inside outward, there is a fast magnetosonic shock,
a slow magnetosonic shock, a contact interface (that is, a dis-
continuity in density but not pressure, equivalent to the DI), a
slow magnetosonic expansion, and a fast magnetosonic expan-
sion. The two waves of interest are the fast and slow shocks;
these process the DI at different times and in different manners,
and we examine their respective contributions in order.

In studies investigating the HD RMI, only one driving shock
typically exists, and this shock is axisymmetric (or in the case
of spherical flow, spherisymmetric). In this flow, the incident
fast shock (IFS) plays a similar role to the shock in HD studies,
except that its strength and geometry varies slightly with the
field orientation to the shock normal, θ. This loss of symmetry
is due to the presence of the magnetic field [7]. Note that the fast
shock does not then process the entire DI at once. Furthermore,

(a) Case C1 (b) Case HD

Figure 2: Developed density field for C1 configuration and the
no-field (HD) cases at t ' 0.71, for k = 16 (darker is greater).
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Figure 3: Refraction of the IFS through the DI, under a C1 field
configuration, β = 4, k = 16 at t ' 0.29. Coloured waves are
shocks, visualised in vorticity, and grey is the DI.

as the shock processes the DI it generates a series of transmitted
and reflected waves. These can be seen in Figure 3, and are as
follows, following the nomenclature of Wheatley et al. [12]:

1. TF - a transmitted fast shock; this is equivalent to the
transmitted shock in an HD RMI flow;

2. TS - a transmitted sub-fast shock; this wave carries vortic-
ity away from the DI along the local magnetic field lines.
This wave is difficult to capture, is quite diffuse, and is not
strongly compressive;

3. RS - similar to the TS, this is a reflected sub-fast shock
which carries vorticity away from the DI;

4. RF - similar to the TF, this is a fast shock and is equivalent
to the reflected shock in an HD RMI flow. In this flow it
is well-resolved but not strongly compressive.

The direct mechanism of suppression of the RMI is the com-
bination of the sub-fast waves TS and RS, which carry vortic-
ity away from the DI. This suppression mechanism has been
noted in previous research [13]. Note however that at orienta-
tions where the field is parallel or nearly parallel to the DI, these
sub-fast waves travel along the DI. This is in line with Wheat-
ley et al., who observed this phenomenon via simulations of
the planar transverse field case [15]. These waves do not, how-
ever, promote growth of the perturbations on the DI since they
continually interfere constructively and destructively with each
other, causing the interface perturbations to oscillate.

The incident slow shock (ISS) processes the DI differently; it
is more diffuse (numerically) than the incident fast shock (IFS),
and changes in its compressiveness dramatically between θ= 0,
where it has near-zero strength and is close to the incident fast
shock, and θ = π/2, where it is close to the contact interface
resulting from the Riemann problem.

Before the ISS can reach the DI, it must first traverse the re-
flected waves RF and RS. It produces an additional wave, which
appears to be an additional reflected slow shock, on interacting
with the RF, and is weakened and slowed by the interaction with
the RS, while RS itself weakens and refracts strongly toward the
normal of the ISS. At this point, the ISS is quite slow and has a
low speed relative to the DI; as a result, it passes through the DI
very gradually - see Figure 4. Unlike the IFS, however, the ISS
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Figure 4: Refraction of the ISS through the DI, under a C1 field
configuration, β = 4, k = 16, at t ' 0.71. Coloured waves are
shocks, visualised in vorticity, and grey is the DI.
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Figure 5: Refraction of the ISS through the DI under a C3 field
configuration, β0 = 4, k = 16, at t ' 0.57. Coloured waves are
shocks, visualised in vorticity, and grey is the DI.

does not interact strongly with the DI: the baroclinically gener-
ated vorticity and additional waves resulting from the interac-
tion are too weak to be visible in these results. It does refract
slightly as it moves into the denser fluid inside the DI.

At late times, the contact point between the ISS and the DI
moves towards the polar angle φ = π/2, where a singularity in
the slow shock geometry (“kink”) exists [6]. The formulation of
the problem is such that by the time this singularity approaches
the DI closely, the TF is about to re-process the DI, having re-
flected off the domain centre, in a process called reshock. We
therefore do not consider the interaction of the kink with the DI.

Figure 5 shows the wave structure for C3 at t ' 0.45, as the ISS
is processing the DI. This is equivalent to the ISS processing the
DI in C1, shown in Figure 4. Similar flow structures to case C1
appear, but with double the azimuthal frequency.

Figure 6 compares maximum perturbation amplitude and com-
pression ratio (calculated from the mean DI radius) between the
C1, C3, and HD cases for two wavenumbers k = 16,64. For the
C1 and C3 cases, only the largest amplitude in the domain is
presented; these amplitudes are associated with the wavelengths
where the field is normal to the DI, that is at polar angles φ' 0.
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Figure 6: Normalised maximum perturbation amplitude (solid)
and compression ratio (dashed) for no-field (HD), uniform-field
(C1) and saddle field (C3) configurations, with wavenumber k.

The seed-field cases show perturbation amplitudes that are uni-
versally lower than the corresponding no-field cases, suggest-
ing suppression of the RMI. The amplitudes in fact begin to
decrease after some time due to the inward acceleration of the
surrounding flow, causing the onset of the Rayleigh-Taylor in-
stability. These negative growth rates are, however, far smaller
than in the HD cases, indicating the RTI is also suppressed by
the seed field. High wavenumbers see a high and consistent ini-
tial growth independent of field strength or configuration; this
is characteristic of the RMI, whose (early) linear growth rate is
proportional to wavenumber [1]. C3 fields consistently achieve
lower peak perturbation amplitude than their C1 counterparts.
The compression ratio appears unaffected by field configura-
tion, strength, or perturbation wavenumber, and does not reach
any maximum for these simulation times.

Due to the wavelengths represented in these amplitude graphs
existing at very low φ, the effect of the ISS is not visible in
Figure 6, since the ISS weakens to zero strength at θ = φ = 0.

Conclusion

We examine the Richtmyer-Meshkov instability (RMI) in
two-dimensional converging cylindrical magnetohydrodynamic
(MHD) flows, under a seed magnetic field. For the field config-
urations and initial perturbation wavenumbers tested, the RMI
is suppressed, showing an initial linear growth rate, as in the
hydrodynamic (HD) case, followed by a subsequent decrease
which we attribute to the transport of vorticity; we note that
a saddle-field configuration shows increased suppression over
the uniform-field case, while increased perturbation wavenum-
ber gives a higher initial growth rate and peak amplitude. The
converging MHD shocks process the material interface in dif-
ferent ways - the first accelerating shock, a fast MHD shock,
produces four transmitted and reflected waves, as expected from
previous studies on the planar MHD RMI; the slower of these
waves serve to carry vorticity away away from the material in-
terface, suppressing its growth. The second incident shock, a
slow MHD shock, refracts through the material interface but
does not appear to dramatically affect its growth characteristics.
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