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Abstract

We describe new results from Direct Numerical Simulations for
the dispersion of molecules over a range of values of Schmidt
number Sc (the ratio of the kinematic viscosity to the molecu-
lar diffusivity) at a Taylor scale Reynolds number of 140. Our
focus is on the statistics of single independent molecules and
pairs of molecules. We show that at small times our results for
both single molecules and pairs agree with the exact theoretical
results of Saffman describing the interaction of the molecular
diffusion and the turbulence within the dissipation sub-range.
For high Sc numbers (low diffusivity) our results for the rela-
tive dispersion of pairs of molecules in the dissipation sub-range
show an exponential growth regime with a rate constant which
can be connected to a value B̃θ ≈ 5 for the Batchelor constant,
a parameter of the scalar variance spectrum.

Introduction

Most experimental observations or numerical calculations of
turbulent flow are made at fixed points x in space at time t at
which the velocity and the concentration of an inert scalar are
given by u(x,t) and c(x,t) respectively.

On the other hand, it is possible to describe the flow in terms
of the velocity and concentration (and other quantities of in-
terest) at a point moving with the flow.This is known as a La-
grangian description of the flow [6]. The position of this point
x+(t;x0,t0) is a function of time and of some initial point x0
and time t0 at which it was identified or “labelled”. Its velocity
is the velocity of the fluid where it happens to be at time t,

dx+/dt = u+(t; x0,t0) = u(x+(t),t) (1)

We will use the superscript (+) to denote Lagrangian quantities,
and quantities after the semi-colon are independent parameters.
We refer to a point moving in this way as a fluid particle.

It is useful to generalize this description to include the joint ef-
fect of the fluid velocity and molecular diffusion on the motion
of the particle [7, 8, 9]

dx+(B) = u(x+(B) (t),t)dt +
√

2κdW (t) (2)

where dW is the vector incremental Wiener process [5], κ is the
molecular diffusivity and the superscript (B) denotes a Brow-
nian particle. Equation (2) is a stochastic differential equation
that effectively describes the motion of a molecule through the
flow. For a given realization ω of the flow the statistics of the
displacement of the molecule, averaged over the molecular mo-
tion, are described by the displacement PDF P(ω) (x,t |x′,t ′)
which is just the probability density of finding a molecule at

position x at time t given that it was at position x′ at time t ′.
Pope [7] showed that the molecular displacement PDF is equiv-
alent to the scalar concentration due to an instantaneous point
source of unit strength. The extension to general source condi-
tions follows simply by integrating over the source distribution.
Then averaging over different realizations of the flow field gives
exact Lagrangian results for the moments of the scalar field
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where S(x,t) is the source distribution, P(x,t |x′,t ′) =〈
P(ω) (x,t |x′,t ′)

〉
is the displacement PDF for a molecule

averaged over both the molecular and fluid motions,
P(x,t |x′1,t

′
1,x
′
2,t
′
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′
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′
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〉
is the

probability density of finding two particles at the same loca-
tion x at time t given their specified earlier positions. In general
the nth order scalar concentration moments can be specified in
terms of the joint displacement statistics of n molecules.

Here we present new results from Direct Numerical Simula-
tions (DNS) for the displacement statistics of single indepen-
dent molecules and pairs of molecules over a range of Schmidt
numbers. We analyze our results in particular limiting regimes
(for example at small times or on small scales) and compare
them with known theoretical results. In Section II we describe
the DNS methodology. We present results for the dispersion of
single molecules in Section III, the relative dispersion of pairs
of molecules in Section IV and our conclusions in Section V.

DNS Calculations

The flow studied in this paper is isotropic turbulence computed
using a Fourier pseudo-spectral approach on a 3D periodic do-
main. To obtain Lagrangian information we obtain the fluid
particle velocity according to equation (1), using cubic-spline
interpolation based on Eulerian data at neighboring grid points.
Particle positions are updated at every time step using the same
second-order Runge Kutta (predictor-corrector) scheme as for
the Eulerian velocity field. Molecules are tracked by adding
a Brownian motion contribution (equation (2)) at the predictor
stage of each time step. The Brownian contribution over a finite
time step ∆t, is approximated by dWi =

√
∆tξi where ξi is a

standardized Gaussian random variable. Both the Eulerian so-
lution domain and the Lagrangian population of fluid particles
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Figure 1: Lagrangian velocity correlation along molecular tra-
jectories at Rλ = 140 for indicated values of Sc increasing from
bottom to top.

and molecules are divided uniformly across the memory of a
large number of parallel processors.

In this paper we focus on DNS results for stationary isotropic
turbulence at Taylor-scale Reynolds number Rλ = 140, which
is just sufficiently high for the Eulerian energy spectrum to pos-
sess limited inertial range characteristics. The grid resolution is
2563 and each grid spacing is equal to about two Kolmogorov
length scales, η = (ν3/〈ε〉)1/4, where 〈ε〉 is the mean rate of
dissipation of turbulence kinetic energy and ν is the kinematic
viscosity. Statistical stationarity is maintained by a numerical
scheme described in Donzis and Yeung [4]. Unlike Eulerian
and scalar fields molecular path statistics are readily obtained
at any Schmidt number without any special needs for temporal
or spatial resolution. We have tracked molecules with Schmidt
numbers from very low to very high: namely Sc = 0.001, 0.01,
0.125, 1, 8, 100 and 1000. To ensure adequate sampling we
have tracked 4194304 fluid particles with random and uni-
formly distributed initial positions, with four molecules of each
Sc being coincident with each fluid particle at time t = 0. This
configuration gives us the capability to calculate the dispersion
between fluid particles and molecules, as well as that between
molecules which are initially coincident but move apart imme-
diately due to the Brownian nature of molecular diffusion.

For a population of M fluid particles one can in principle form
M (M − 1)/2 pairs of these entities, with the initial separations
being random but satisfying a continuous probability distribu-
tion. Thus, instead of specifying discrete values of initial sep-
arations (as in previous work), we use conditional sampling to
obtain, say, results for particle pairs whose initial separations
were in a finite range centered upon a certain value. Because the
total number of particle pairs can become impractically large
(approximately 8.8 × 1012 for M = 4194304), when we run
a parallelized postprocessing code, we only count those pairs
formed out of particles which are held by the same processor
when processing the data.

Single Molecule Statistics

We consider first statistics of the fluid velocity along the trajec-
tory of a molecule through the fluid. These statistics are of in-
terest because they determine the mean concentration of a scalar
field at finite Schmidt and Reynolds numbers. The most impor-
tant quantity is the Lagrangian velocity correlation along the
trajectory of a molecule

R(B)
L

(τ) =
〈
u+(B)
i

(t + τ)u+(B)
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〉
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Figure 2: Minus the term representing the interaction between
molecular and turbulent motions at Rλ = 140 for indicated val-
ues of Sc, increasing from top to bottom. The solid lines are
DNS results and the dashed lines are Saffman’s small-scale the-
ory equation (9)

where u+(B) = u(x+(B) ,t) is the Eulerian velocity at the loca-
tion of the molecule at time t. R(B)

L
is sometimes [8] referred to

as the substance auto-correlation. Figure 1 shows the correla-
tion as a function of the non-dimensional time lag τ/tη , where
the Kolmogorov time scale tη = (ν/〈ε〉)1/2, for a range of Sc at
Rλ = 140. The case Sc =∞ corresponds to the motion of fluid
particles in the absence of a molecular motion. We see that as
the Schmidt number decreases and the influence of the molec-
ular motions increases the correlation drops off more quickly
with time, but strong departures from the fluid particle case are
seen only for Sc� 1. The Lagrangian integral time scale

T (B)
L

=

∫ ∞

0
R(B)
L

(τ)dτ (6)

is an important measure of the rate of decay of the correlation.
It is also an important quantity in practical terms since it deter-
mines the turbulent diffusivity 1

3

〈
u2
i

〉
T (B)
L

and so controls the
rate of dispersion of scalar contaminants in the flow.

The velocity correlation is also important in practical terms
since it determines the turbulent dispersion of the particles and
hence the mean rate of spread, and consequent dilution, of a
scalar contaminant. For molecular trajectories, the dispersion is
given by〈

x+(B)2

i
(t)

〉
= 6κt + 2

〈
u2
i

〉∫ t

0

∫ t ′

0
R(B)
L

(t ′′)dt ′′dt ′ (7)

Saffman [8] showed that the second term on the right hand side
can be written as the sum of the dispersion of fluid particles〈
x+2

i

〉
plus a term ∆ involving the interaction of the molecular

and turbulent motions. Thus the interaction term is the residual
after the direct molecular diffusion term and the fluid particle
dispersion are subtracted from the molecular dispersion

∆ =

〈
x+(B)2

i

〉
−6κt +

〈
x+2
i

〉
(8)

On dissipation sub-range scales the flow field is smooth and
Saffman used Taylor series expansions in both space and time
to derive an exact result for the interaction term

∆/η2 = − 1
3 Sc−1(t/tη )3 +O(t4), (9)

which is valid for
〈
x+(B)2

i
(t)

〉
� η2 and t � tη .
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Figure 3: Minus the term representing the interaction between
molecular and turbulent motions at large times T � T (B)

L
as a

function of Sc for Rλ = 140. The black symbols have been
calculated directly from the dispersion estimates through equa-
tion (8) and the red symbols are calculated from estimates for
the integral time scale. The solid line is Saffman’s large-time
theory equation (10).

We test Saffman’s theory equation (9) in figure 2 where we plot
−∆/η2 calculated from equation (8) against t/tη . For Sc ≥ 1/8
the DNS results approach the theoretical limit for t < tη , but
with decreasing Sc the small-time behaviour of the DNS falls
increasingly below the theory. This is because the direct molec-
ular diffusion term 6κt/η2 > 1 for t/tη > Sc, which restricts
the theory at these low Schmidt numbers to much smaller times
than shown in figure 2 .

Saffman also derived an approximate theory for large times t �
T (B)
L

in which the interaction term is given by

∆∞ ≈ −a
√

15Sc−1R−1
λ
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〉
(10)

Using the large time limit
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t for the
dispersion we can write this large-time interaction term as
∆∞/
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x+2
i

〉
= T (B)

L
/TL −1.

Figure 3 shows the relative interaction term, calculated both di-
rectly from equation (8) at large times and indirectly from the
Lagrangian integral time scales, as a function of Sc. The agree-
ment between the two estimates is generally good, although it
deteriorates with increasing Schmidt number as the interaction
term gets smaller and more difficult to estimate. Saffman’s the-
ory is in reasonable agreement with the data at large Sc, but
the predicted linear dependence on Sc inevitably breaks down
at small Sc since T (B)

L
≥ 0. On a practical level, data like those

presented in figure 3 are useful for modeling the dispersion of
low-Sc scalars. For example, the integral time scale is an impor-
tant parameter in Lagrangian stochastic models of dispersion,
and to a first approximation, can simply be adjusted in disper-
sion models to allow for finite Sc effects.

Relative Dispersion of Pairs of Molecules

In this Section we present and analyze results for statistics of the
separation of a pair of molecules. These statistics are important
because they determine second-order concentration statistics of
a scalar field, such as the scalar variance and the scalar dissipa-
tion rate, at finite values of the Schmidt number and Reynolds
number.

As for the one-particle statistics discussed above, there are the-
oretical predictions under special limiting conditions which we
can test against, and use to validate, our numerical results. For
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Figure 4: Relative dispersion of initially coincident molecule
pair trajectories corrected for the direct molecular diffusion term
at Rλ = 140 for indicated values of Sc, increasing from top to
bottom. The solid lines are DNS results and the dashed lines are
Saffman’s small-scale theory equation (11).

example, in addition to the exact result for one-particle statis-
tics on small-scales described above, Saffman [8] also derived
the corresponding result for the relative dispersion of initially
coincident pairs of molecules, which in non-dimensional form
is 〈

r2(t)
〉
/η2 = 12Sc−1t/tη +

4
3

Sc−1(t/tη )3 +O(t4) (11)

where r (t) is the magnitude of the separation of a pair
of molecules. Equation (11) holds for initially coincident
molecules, r0 = r (0) = 0 and for times such that t � tη and〈
r2(t)

〉
� η2. Figure 4 shows the mean-square separation of

initially coincident pairs of molecules corrected for the direct
effect of molecular diffusion as a function of time for various
values of Schmidt number for Rλ = 140. For large Sc the DNS
results agree almost exactly with the Saffman term represent-
ing the interaction of the turbulent and molecular motions for
t/tη . 1 and in fact are in good agreement for even larger times.
With increasing Sc the Saffman term applies only up to increas-
ingly shorter times because the direct molecular diffusion term
becomes increasingly larger and drives the separation out of the
influence of the dissipation range motions increasingly quickly.

Saffman’s result is readily extended to particles with small ini-
tial separations r0 � η〈

r2(t)
〉
/η2 =(r0/η)2 + 1

3 (r0/η)2(t/tη )2 + 12Sc−1t/tη

+ 4
3 Sc−1(t/tη )3 (12)

where the second term on the right, the so-called Batchelor
term, is the leading order contribution from the turbulence and
follows from a Taylor series expansion in time within the dissi-
pation sub-range. The relative dispersion of a pair of molecules,
corrected for both the direct molecular contribution and for
the initial separation, is shown in figure 5 for Rλ = 140 and
Sc = 8. We see that results over a range of initial separations,
r0/η ≤ 0.39 collapse onto the Saffman term at small times. For
larger initial separations, the Batchelor term dominates at the
times shown. For Sc = 1000 (not shown here) this collapse to
the Saffman term is limited to a smaller range of initial separa-
tions r0/η < 0.09. In general, with decreasing Schmidt number
(also not shown here), the collapse over initial separations ex-
tends to larger scales, although the interaction term eventually
deviates from the Saffman form on the times shown here be-
cause the separation no longer remains within the dissipation
sub-range.
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Figure 5: Relative dispersion of molecule pair trajectories,
corrected for the direct molecular diffusion term and the ini-
tial separation, at Rλ = 140 for non-zero initial separations at
Sc = 8. The solid lines are DNS results at (bottom to top)
r0/η = 0,0.09,0.39,1.5,6.2,25,97,350,580. The dashed line is
Saffman’s small-scale theory 4/3Sc−1(t/tη )3. The dotted line
is the Batchelor term 1/3(r0/η)2(t/tη )2 for r0/η = 1.5.
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Figure 6: Relative dispersion of molecule pair trajectories
at Rλ = 140 for non-zero initial separations at Sc = 1000.
The solid lines are DNS results at (bottom to top) r0/η =

0,0.09,0.39,1.5,6.2,25,97,350,580. The dashed lines are the
large-Sc theory equation(13) with B̃θ = 5 .

For large enough Schmidt numbers the separations remain with
the dissipation sub-range for times much greater than the Kol-
mogorov time scale tη . During this extended time period the
separation process is subject to dissipation sub-range dynamics
and an analytical solution for the growth is possible [1]. Within
this regime we have〈

r2(t)
〉
/η2 =(r0/η)2 exp(2B̃−1

θ t/tη )

+ 6Sc−1 B̃θ [exp(2B̃−1
θ t/tη )−1] (13)

This exponential growth regime is controlled by the constant
B̃θ which has been identified [1] as the Batchelor constant
which determines the viscous-convective regime of the scalar
variance spectrum at large Sc.

In figure 6 we compare our DNS results for the mean square
separation for Sc = 1000 and Rλ = 140 with equation (13). We
see that for r0/η = 0 the theory with B̃θ = 5 is a good fit to
the data for times almost as large as t/tη = 10. More gener-
ally the theory is a good fit to the data for r0/η . 1 albeit over
a decreasing time range with increasing initial separation. The

value B̃θ = 5 for the Batchelor constant is consistent with pre-
vious estimates [1, 2, 3].

Conclusions

We have presented new DNS results for the dispersion of
molecules over a range of Schmidt numbers at a Taylor scale
Reynolds number of 140 in isotropic turbulence. Our results
agree well with theoretical predictions on small space and time
scales. From a fit of theory to our results at large Schmidt num-
ber we obtain an estimate B̃θ = 5 for Batchelor’s constant which
determines the viscous-convective regime of the scalar variance
spectrum at large Sc. We expect that our results for the depen-
dence of the Lagrangian integral timescale on the Schmidt num-
ber will be useful in Lagrangian modelling of turbulent disper-
sion at finite Schmidt and Reynolds numbers. Our future work
will extend these results to higher Reynolds numbers where we
will also be able to study the scaling behavior on larger scales,
particularly within the Richardson range.
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