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Abstract

Standard compressible flow solvers loose accuracy at low Mach
numbers as they become excessively dissipative. This dissipa-
tion can be reduced by either refining the mesh significantly, or
by utilising an all-speed scheme. This paper explores whether
the use of an all-speed scheme is required to accurately resolve
a compressible turbulent boundary layer at low Mach, using a
truncation error analysis. Taking Mach 0.1 as the starting point,
it is shown firstly that an attached boundary layer is not a chal-
lenging configuration even for first order accurate schemes. In
regions of separation numerical dissipation increases dramati-
cally, and a second order scheme is likely to provide numerical
dissipation close to that given by the turbulence model. In such
a situation, the corrected scheme would be advantageous, but
for simple attached boundary layers such a correction would
not be required.

Introduction

Several all-speed algorithms have been proposed recently which
aim to extend the applicability of upwind (density-based) meth-
ods to low Mach flows, or mixed low/high Mach flows. These
methods do not usually aim to address the stiffness or cancella-
tion problems at low Mach [19, 12], but significantly improve
the accuracy. Examples of these algorithms include a structured
Godunov approach [16, 17], unstructured Godunov approaches
[2, 1, 9], the SLAU flux [13], the AUSM+-up scheme ([7], and
all-speed Roe schemes [15, 10, 3, 6]. Multiple previous papers
have demonstrated the improvement in flows where the Mach
number is clearly low (M << 0.1), however it is not clear if
there is benefit in using an all-speed scheme when simulating
boundary layers where the freestream MachM > 0.1.

It is possible that the strong refinement within the boundary
layer already reduces the numerical dissipation sufficiently thus
giving negligible difference between the all-speed and the stan-
dard scheme. This was noted recently when simulating shock
boundary layer interactions (SBLI) using Reynolds-Averaged
Navier-Stokes (RANS) in supersonic flows [4]. It is also possi-
ble that the role of numerical dissipation in that problem was
simply negligible in determining the details of the SBLI, so
that the improvements in behaviour were simply not noticed.
This short paper explores the variation of numerical dissipa-
tion within a typical flat plate boundary layer as both freestream
Mach number and Reynolds number vary, for grids constructed
for use with RANS. It starts by outlining the key assumptions
in this analysis, then presents the results of the analysis of dis-
sipation rate for boundary layer Reynolds numbers of 106, 107

and 108 and finally draws the conclusions from the study.

Assumptions

This paper focuses purely on direction split Godunov-type
methods. A typical example is a curvilinear multiblock com-
pressible solver utilising MUSCL reconstruction [20] feeding
into a HLLC approximate Riemann solver [18], such as that
developed by the author [4]. The advantage of considering
these schemes is that their multidimensional implementation is

a simple extension of the one dimensional method by conduct-
ing three one dimensional sweeps. Thus analyses can focus on
the one dimensional problem which, once understood, also de-
scribes the performance of the three dimensional algorithm.

Dissipation Rate

It was shown that the dissipation of turbulent kinetic energy in a
numerical scheme can be effectively determined by measuring
the change in temperature multiplied by the entropy change dur-
ing the simulation [16]. This applies to all numerical schemes,
however the paper focused on deriving explicit leading order
dissipation terms for a first order in time and space Godunov-
type algorithm at low Mach. For example, the dissipation of ki-
netic energy in a standard explicit first order Godunov approach
for a step change in velocity is [17],

ε ≈
∆u2a
4∆x

(1−C ) , (1)

where∆x is the grid spacing,∆u the velocity jump at the cell
interface,a the speed of sound andC is the Courant-Friedrichs-
Lewy number. The problem of standard compressible schemes
at low Mach is that this dissipation rate increases linearly with
a thus giving an unphysically high dissipation rate at low Mach.

To be Mach independent, the dissipation rate should scale with
u3/l wherel is a typical length scale. If this length scale is as-
sumed constant, then the any decrease in Mach number must
be accompanied by an increase in mesh resolution to maintain
accuracy. For example, if the Mach number of a first order ac-
curate scheme is reduced by a factor of 10, then for an uncor-
rected scheme the mesh spacing∆x must decrease by a factor
of 10 in each direction to maintain accuracy. With a low Mach
correction, this is not necessary.

In a boundary layer, the length scale that is resolved in the
computation depends either on the curvature of the mean flow
(RANS), the thickness of the boundary layer (RANS), or on the
local eddy size (LES/DNS). It is normal practice to cluster the
points close to the wall, which would naturally reduce dissipa-
tion, thus at a high enough Mach number the clustering may be
sufficient to gain the necessary reduction to maintain the accu-
racy of the scheme (in the wall normal direction).

To determine this, a more general form of equation(1) is re-
quired for smoothly varying flows. Following the analysis of
[16] but using a continuous function instead of a step,and as-
suming constant pressure and density initially, the leading order
kinetic energy dissipation rate is

ε =
∆x

(

a2(1−C )+CU2
)

U2
x

2a
(2)

This expression has been validated through an unsteady test
case with the following initial conditions solved on a domain
of size 1,



p= p0/M2, ρ = ρ0, u= 0.5Masin(2πx) , (3)

where the Mach numberM = 0.01.
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Figure 1: Actual dissipation of kinetic energy over a single time
step compared to predicted using equation (2) for a testcase con-
sisting of a simple sinusoidal flow field

Figure 1 compares the entropy rise over one time step for each
cell as predicted by equation (2) and calculated from the simula-
tion. This equation is predictive - it matches actual cell-by-cell
numerical results to within 1% at Mach 0.01, which in the au-
thors knowledge is the first time a validated and accurate quan-
titative formula predicting the dissipation rate of a fully com-
pressible Godunov scheme has been presented. It will be used
here to give predictions for the flat plate boundary dissipation
rate, where the key assumption is that pressure is constant and
density gradients low, thus entropy production will be driven by
the velocity gradients.

Note also that previous studies showed that the only component
of the dissipation which increases as Mach decreases is that due
to the interface-normal velocity component, the dissipation of
shear waves is Mach uniform [17].

Grid Resolution and Boundary Layer Profile

Typical RANS grids place the first point aty+ = 1 (wall re-
solved low Reynolds), ory+ ≈ 50 (wall modelled). The cells
are grown using a growth factor of 1.2 up to a maximum of
δ/10 and then remain of a constant size, whereδ is the local
boundary layer momentum thickness [14].A relatively fine res-
olution of ∆x+ = 100 in the streamwise direction is assumed
here. These criteria will be employed in the analysis presented
here.

The mean boundary layer velocity profile is modelled by a lin-
ear viscous sublayer whereu+ = y+ for y+ ≤ 11, a log-law
regionu+ = 2.44lny++5.2 up toy= 0.1δ and an outer region
where the log law is linearly blended with a one-seventh power
law u+ = Ue/uτ(y/δ)(1/7) up to y = δ where the freestream
velocity is achieved. The result is not expected to be overly
sensitive to the exact details of the wall boundary layer model.

An important result to note is that even atRex = 108 atM = 0.1,
the expected mean flow Mach number on the boundary of the
viscous sub-layer is≈ 37% of the mean flow Mach - i.e. the gra-
dient of the Mach number is relatively low through the bound-
ary layer until the viscous sublayer. This implies that even at

M = 0.1 there is a good chance that increasing grid resolution
will be sufficient for an attached boundary layer.

An effective numerical simulation should ensure that the nu-
merical dissipation rate is below that expected physically, or
provided by the turbulence model. In the case of a turbu-
lent boundary layer, the dissipation provided by the turbulence
model should beε+ = 1/κy+ in the log layer [21]. Measure-
ments indicate that this decreases to zero through the viscous
sublayer where it is given byε+ = y+/100, and the intersect of
these two curves is aty+= 15.6. In the subsequent section this
provides the reference level of turbulent dissipation rate which
the numerical dissipation rate should be significantly below.

Using this foundation, the next section explores the variation
of dissipation rate within a typical boundary layer for RANS in
the wall-parallel (x,z) and wall-normal direction (y). This paper
starts at Mach 0.1, as below a freestream Mach number of 0.1
it is clear that the low Mach correction should be applied as has
been shown in several previous test cases (see literature refered
to in the introduction). If the dissipation rate is sufficiently low
at Mach 0.1, then higher Mach numbers can be assumed to be
sufficiently well resolved too.

Results

Examining the magnitude of the terms in the mean turbulent
boundary layer equations [11], it is clear that the two principle
sources of dissipation to consider in the solution of the inviscid
part of the mean governing equations are those fluxes due to
(i) streamwise gradients (ρu∂u/∂x) and (ii) advection of shear
gradients (ρv∂u/∂y), which are both of order 1 in the boundary
layer equation for streamwise momentum.

The maximum streamwise gradient based on the model mean
boundary layer equation is at the boundary layer edge, where
∂u/∂x = (−6/49)U/x wherex is the length of the boundary
layer up to that point. The streamwise gradient decreases ap-
proximately proportional toy1/7 towards the wall and can be

written as∂u/∂x= −6/49
U

(

y
0.16

(U
ν
)1/7

)1/7
x−55/49. For a first

order accurate scheme without a low Mach correction the lead-
ing order kinetic energy dissipation rate is given by equation
(2), accurate to within a percent. Combining this result with
the empirically definedux gives the result that with constant
streamwise grid spacing through the boundary layer the numer-
ical kinetic energy dissipation rate decreases through the bound-
ary layer proportional toy2/7.

The numerical dissipation for the 1st order scheme is plotted
with the expected turbulent dissipation rateε in Figure 2 (a)
for three representative Reynolds numbers atM∞ = 0.1. The
dissipation due to the streamwise gradients is several orders of
magnitude below the dissipation of the turbulence model for the
majority of the boundary layer for 106 ≤ Rex ≤ 108, due to the
slow rate of change of the streamwise gradients. With curvature
the actual resolution required will increase, however under the
assumption that the curvature of the mean flow is adequately
resolved by the∆x+ at the outer layer, the same∆x+ will give
sufficient levels of dissipation through the boundary layer even
with a first order standard compressible scheme. This clearly
implies that higher order schemes will equally have sufficiently
low dissipation due to streamwise fluxes, even without a low
Mach correction.

In a finite volume density based solver the term (ii)ρv∂u/∂y
is representated as a transport of a shear wave inu by the wall
normal velocityv over an interface oriented in they-direction.
As shown previously [17], the dissipation of this shear wave is
uniform with respect to Mach number. The main requirement
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Figure 2: Dissipation rate due to (a) streamwise gradients at 1st
order and (b) the worst case scenario of wall normal gradients
aligned with the local velocity at 1st order scheme.

here is that the numerical scheme resolves the steeper gradients
close to the wall which is satisfied for standard second order or
higher schemes on meshes which follow the standard gridding
guidelines (i.e. cluster to the wall).

The conclusion of this analysis is that a standard, uncorrected
density-based scheme will be sufficient for attached boundary
layers. For separation bubbles the gradients will change as thev
velocity will now be of a similar order as theu velocity, invali-
dating the assumptions of the previous analysis. The worst case
scenario is that the largest gradients are aligned in the direction
of the smallest velocity. The largest gradient is∂u/∂x = u2

τ/ν
and is located in the viscous sub-layer.

Figure 2(b) illustrates the expected kinetic energy dissipation
rateε from the RANS model compared to the analytically pre-
dicted dissipation rate from the first order scheme assuming that
both the velocity field and the gradients are directed in the wall
normal direction. The first order scheme is at least two orders of
magnitude too dissipative in this worst case scenario. This in-
dicates clearly (i) a flat plate boundary layer is not a demanding
test case, and (ii) numerical dissipation rates can be expected to
change by five orders of magnitude in the region of a separation.

As effective RANS simulations typically employ second order
accurate methods, it is important to extend these results to a
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Figure 3: Dissipation rate due to the worst case scenario of wall
normal gradients aligned with the local velocity with a 2nd or-
der scheme compared to the expected turbulent kinetic energy
dissipation rateε+.

representative second order in space scheme. The MUSCL
scheme with the second order upwind van Leer limiter is one
such scheme. Rider and Margolin [8, 5] derived the effective
numerical shear stressτnum for the 2nd order van Leer limiter
[20], however the expressions presented are too complex to be
of use predictively.

Thornberet al. [16] presented the leading order terms for van
Leer couple with a first order in time scheme. However, on
closer inspection this term shows that this 2nd order in space/1st
order in time system is actually marginally unstable, which is
easily confirmed through computation. Extending this analysis
to second order in time introduces a larger stencil and the re-
sulting solution again becomes too complex to be of direct use.
Thornberet al. also used numerical tests to demonstrate that
for second order in space scheme with higher order accurate
methods in time (i)ε scales with the speed of sound as shown
for first order schemes, and (ii) it scales with∆x3 which is the
magnitude of the differences in the Riemann problem.

A leading order expansion for a second order scheme, similar
to equation (2) is beyond the capabilities of current symbolic
manipulation packages, where a simplified form has not been
found. Using the testcase outined in the assumptions section,
the magnitude of the dissipation rate is reasonably well esti-
mated byε = ∆x3a(1−C )U2

xx/4 - however pointwise it is only
accurate to the order of magnitude. Here it will be used to esti-
mate the dissipation rate for the second order van Leer method
applied to the model turbulent boundary layer.

Figure 3 shows the above worst case scenario plotted for the
2nd order van Leer scheme. The numerical dissipation rate is
substantially reduced compared to the first order scheme as ex-
pected. However, it is still on the same order of the magnitude
of the turbulent dissipation rate for much of the inner log layer.
In the outer log layer, the numerical dissipation is lower, and
in the viscous sublayer the theoretical error is zero as this is a
second order scheme fitting a linear profile exactly.

Enabling the low Mach correction would reduce dissipation by
a factor of 10 in this Mach 0.1 case to be≈ 10% of the ex-
pected turbulent dissipation rate at all points in the boundary
layer. Note that in the worst case scenario depicted here, the
expected turbulent dissipation rate will also be higher than that



plotted here for an attached smooth boundary layer.

Thus in regions of strongly varying flow properties, e.g. flow
separations, then it is expected that a second order accurate stan-
dard density based compressible method will provide a dissipa-
tion rate which adds considerably to the turbulence model. With
a low Mach correction, the dissipation rate due to the turbulence
model would dominate.

Based on this analysis, it is likely that very high order schemes
(e.g. fifth order) will not benefit greatly from the application
of a low Mach correction at freestream Mach numbers greater
than 0.1, should the standard grid resolution requirements be
followed. It is worth noting that in practical geometries where
the freestream Mach number is high, there are usually many re-
gions where relatively low Mach number flows exist (e.g. sec-
ondary recirculation zones in flap gaps, or behind slats) and as
such these would clearly benefit from a low Mach correction.

Conclusions

The above analysis has demonstrated through a quantitative
analysis of first order and second-order accurate schemes that
for RANS simulations of low Mach boundary layers (M ≈ 0.1)
and attached boundary layers a low Mach correction is likely
not required. The dissipation rates predicted due to the Mach
sensitive dissipation terms are substantially lower than the dissi-
pation rates provided by the RANS model, even for a first order
scheme.

An exploration of the worst case scenario indicates that the sit-
uation changes dramatically, with first order schemes certainly
too dissipative, and second order schemes estimated to give dis-
sipation of approximately the same order of magnitude as the
modelled dissipation rate. Based on these observations, a ben-
efit will be shown in employing a low Mach corrected second
order scheme for more complicated flow fields. This scenario is
representative of the conditions present in flow separation.

Given that the low Mach correction is computationally inexpen-
sive ( 2% additional time), and that for geometries of practical
interest there are usually several recirculation zones at consider-
ably lower Mach than the freestream velocity, the rationale for
a Mach-uniform algorithm is clear.
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