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Abstract

Particle capture, whereby suspended particles contact and ad-
here to a solid surface (a ‘collector’), is an important mecha-
nism for a range of aquatic environmental processes. Although
particle inertia is often ignored in the analysis of particle capture
in aquatic systems, inertial effects can become important under
certain conditions. In this paper, we use a numerical analysis
of Lagrangian trajectories of aquatic-type particles (where the
ratio of particle density to fluid density is close to one) to quan-
tify the influence of inertia on particle capture in a parameter
space relevant to aquatic systems. Our analysis shows that in-
ertia can not only augment capture efficiency but also diminish
it, and that inertial effects appear well before the critical Stokes
number is reached. The role of particle inertia is maximised
at Stokes numbers above the critical value and can result in as
much as a six-fold increase in the capture of particles with a
density similar to that of suspended sediment.

Introduction

The term ‘particle capture’ refers to the physical process by
which suspended particles come into contact with a solid struc-
ture (‘collector’) and adhere to the collector’s surface, as shown
in figure 1. One important example of particle capture in aquatic
systems is the adhesion of particles to aquatic vegetation sur-
faces, a phenomenon which defines the filtration and water pu-
rification capacity of vegetated wetlands. Particle capture is
also of significant ecological importance in marine ecosystems;
in particular, it controls the efficiency of seagrass pollination,
suspension feeding (of e.g. corals), and larval settlement. The
effects of particle inertia can become important under certain
conditions but, despite their relevance to ecological function,
these effects have not yet been analysed in a parameter space
relevant to aquatic environments.

For simplicity, collectors such as vegetation stems or the captur-
ing filaments of suspension feeders are often modelled as cylin-
ders and particles as spheres. The capture efficiency (η) of a
cylindrical collector can be defined as the ratio of the number of
particles captured (Nc) to the number of particles whose centres
would have passed through the space occupied by the collector
were it not present in the flow (Na):

η =
Nc

Na
. (1)

In general, capture efficiency depends on four parameters,

η = η(rp,ρ
+,Re,Pe), (2)

where rp is the particle size ratio, ρ+ is the particle density ratio,
Re is the Reynolds number of the collector and Pe is the Péclet
number for particle transport. The definition of each of these
parameters is as follows:

rp =
Dp

D
≡

Rp

R
, (3)
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Figure 1: Steady flow conceptualisation of particle capture by
inertial impaction. As the trajectories of particles influenced
by inertia (indicated in black) do not coincide with the flow
streamlines (indicated in grey), the capture efficiency of parti-
cles influenced by inertia (ηIN ) differs from the direct intercep-
tion value (ηDI ). Here we consider perfect particle-collector ad-
hesion, such that all particles are assumed to be captured when
they contact the cylinder surface.

ρ
+ =

ρp

ρ
, (4)

Re =
ρU∞D

µ
, (5)

Pe =
U∞D
Γp

, (6)

where Dp and Rp are the particle diameter and radius, D and
R are the collector diameter and radius, ρp is the particle den-
sity, ρ is the fluid density, U∞ is the uniform upstream fluid
velocity, µ is the fluid viscosity and Γp is the particle diffusiv-
ity. However, the parameter typically chosen to represent the
importance of particle inertia is the Stokes number (St) [7], as
this non-dimensional group appears naturally in the drag term
of the particle momentum equation for aerosols (ρ+ � 1). The
definition of St incorporates rp, ρ+ and Re:

St =
ρpD2

pU∞

9µD
=

ρ+r2
pRe

9
. (7)

The values of these parameters define the relative importance
of three different mechanisms of particle capture [7]: (i) in-
ertial impaction, where particle inertia causes deviation from
fluid pathlines (streamlines in steady flow), and contact with the
collector (figure 1), (ii) diffusional deposition, where particle-
collector contact is driven by random motions (such as Brown-
ian motion) and (iii) direct interception, where particle centres
follow the pathlines and contact is made due to the finite particle
size .

As discussed by Espinosa et al. [4, 5], direct interception has
been recognized as an important capture mechanism in aquatic
systems. When compared with direct interception, inertial and
diffusive effects on particle capture are typically neglected in
the aquatic systems of interest, due to the low Stokes num-
bers (St) and high Péclet numbers (Pe) of suspended parti-
cles, respectively. We have recently obtained accurate analyt-
ical and graphical tools for estimating particle capture by direct
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Figure 2: The efficiency of particle capture by direct intercep-
tion (ηDI), which increases with Reynolds number (Re) and par-
ticle size ratio (rp) (from [5]).

interception covering a range of particle sizes (0 < rp 6 1.5)
and flow conditions (from creeping flow up to intermediate
Reynolds numbers, i.e. 0 < Re 6 1000) which are relevant to
aquatic systems (figure 2). In the present study we extend this
work by considering the effects of particle inertia in the absence
of diffusive effects.

The capture efficiency for particles with inertia (ηIN ) differs
from the direct interception value (ηDI ) for the same rp and Re,
as their dynamics also depend on the particle density ratio (ρ+).
However, in the limit of high particle inertia, particles are not in-
fluenced by the flow field and travel in straight-line trajectories
in the streamwise direction. In this limit, the capture efficiency
is therefore given by

ηIN,max = 1+ rp. (8)

There has been considerable analytical and experimental re-
search into the effects of inertia on the capture of aerosols
(ρ+ � 1) (see, e.g., [6, 7]). However, such studies are not ap-
plicable to aquatic systems as they are characterised by one or
more of the following conditions: (i) very high particle density
ratios (ρ+ � 1), (ii) a focus on a narrow range of flow con-
ditions (usually inviscid or creeping flow fields, which can be
described analytically), (iii) neglect of the finite particle size
(rp � 1), and/or (iv) a focus on a range of St where inertial im-
paction is entirely dominant. In aquatic systems, the particles
of interest have a density similar to that of water (ρ+ ∼ O(1)),
the flow conditions cover a wide range of Re (0 < Re . 1000),
particle sizes can be of the order of the collector diameter
(rp ∼ O(1)), and St is in a range where both direct interception
and inertial impaction may be dominant. The effects of inertia
on particle capture have yet to be described in a parameter space
relevant to aquatic systems.

Due to the low particle density ratio (ρ+ ∼ O(1)), the equa-
tions of motion for aquatic-type particles cannot be simplified
to the equations commonly used for aerosols [1]; the dynamics
of aquatic-type particles are very different to those of aerosols
in a wide range of flow conditions [9]. Furthermore, when par-
ticles are neutrally buoyant (ρ+ = 1), inertial effects are almost
completely suppressed; while the behaviour of such particles
is very close to that of a perfect tracer, it can differ in zones
with large fluid velocity gradients [1]. Here we use a numerical

scheme to evaluate the effects of inertia on the capture efficiency
of aquatic-type particles by calculating their Lagrangian trajec-
tories in mean flow fields (with time and axial averages obtained
from direct numerical simulation (DNS)). We compare the cap-
ture efficiencies of particles with inertia (ηIN ) to those when in-
ertia is not considered (i.e. pure direct interception, [4, 5]) and
discuss the reasons behind the differing behaviours.

Basic Equations of Motion and Numerical Methods

Equations of fluid motion

The governing equations are the continuity and Navier-Stokes
equations for incompressible flow. Here they are non-
dimensionalized with the uniform free-stream velocity U∞ as
the velocity scale, and the radius of the collector R as the length
scale:

∇ ·u = 0 (9)

and
∂u
∂t

+(∇u)u =−∇p+
2

Re
∇

2u, (10)

where u is the non-dimensional fluid velocity vector, p is the
non-dimensional pressure, t is the non-dimensional time and Re
is the Reynolds number based on the diameter of the collector,
as defined by (5).

Equations of particle motion

Here we consider the influence of the fluid flow on particle mo-
tion but neglect the influence of the particles on the fluid mo-
tion. Particle-particle interaction effects are also neglected. The
Lagrangian equations for each particle [1] can be written in non-
dimensional form as:

dxc

dt
= vc (11)

ρ
+ dvc

dt
=

Duc

Dt
− 9

r2
pRe

(vc −uc)−
1
2

(
dvc

dt
− Duc

Dt

)
(12)

where xc is the non-dimensional position vector of the centre
of the particle, vc is the non-dimensional velocity of the parti-
cle (measured at its centre) and uc = u(x = xc(t), t) is the fluid
velocity at the position of the particle at any instant (consis-
tent with the assumption that particles do not disturb the fluid);
(vc − uc) therefore represents the velocity of the particle rela-
tive to the fluid. The terms on the right of (12) are the horizon-
tal forces acting on the particle and represent, respectively, the
fluid acceleration, the Stokes drag and the added mass effect.
As in Babiano et al. [1], we are neglecting additional forces
due to Faxén corrections and Basset-Boussinesq history. The
derivative Duc/Dt is taken along the path of a fluid element,

Duc

Dt
=

∂uc

∂t
+(∇uc)uc, (13)

while the derivative duc/dt is taken along the trajectory of the
particle,

duc

dt
=

∂uc

∂t
+(∇uc)vc, (14)

so that
Duc

Dt
=

duc

dt
− (∇uc)(vc −uc). (15)

The particle momentum equation (12) can then be rewritten as

dvc

dt
=−

(
2ρ+

2ρ++1

)
1
St
(vc −uc)+

3
2ρ++1

Duc

Dt
. (16)



If dealing with aerosols (ρ+ � 1), (16) can be further simplified
to

dvc

dt
=− 1

St
(vc −uc). (17)

However, for aquatic systems with ρ+ ∼ O(1), all the terms
in (16) must be retained. Following Babiano et al. [1], we
substitute (15) into (16) and rewrite it in terms of the relative
particle velocity to obtain

d
dt

(vc −uc) = −
(

2ρ+

2ρ++1

)
1
St
(vc −uc)

− 3
2ρ++1

(∇uc)(vc −uc)

−
2
(
ρ+−1

)
2ρ++1

duc

dt
. (18)

This form of the momentum equation shows that perfectly
neutrally-buoyant particles (ρ+ = 1), for which the last term on
the right hand side of (18) disappears, behave as perfect tracers
only if the second term (the one containing the fluid velocity
gradient) can also be neglected. In that case, after some ini-
tial difference between the particle and the fluid velocities, the
relative particle velocity would decay exponentially with time
[1] and particles would follow fluid paths exactly. But when
the fluid velocity gradient is large (as in zones close to stagna-
tion points [1]) or when the particles are not perfectly neutrally-
buoyant, the two last terms on the RHS of (18) induce particle
dynamics which differ from both those of a perfect tracer and
those characterised by the common aerosol simplification (17).

Numerical Methods for Estimating Particle Trajectories

Capture efficiencies and critical Stokes numbers were estimated
with a Lagrangian approach by ‘seeding’ particles within a se-
ries of fully-developed flow solutions (obtained from DNS as
described in our previous work [4, 5]. Both the fluid velocity
and velocity gradient fields were imported into MATLAB R©1

release 2013b, and the particle trajectories calculated within the
framework of this numerical tool. When Re 6 47, the flow is
steady; above this value of Re, the flow is unsteady. How-
ever, calculation of particle trajectories in unsteady flow fields is
very computationally expensive. Consequently, in this range of
higher Re, DNS flow fields were first axially- and time-averaged
into mean flow fields before particle trajectories were calcu-
lated. For Re > 180, at least 50 oscillation cycles of fully-
developed flow were used for the averaging in time, as the flow
is no longer perfectly time-periodic when three-dimensional
vortex shedding is present [8].

For the particle capture estimates, ‘clouds’ of particles of finite
size were seeded into the computational domain upstream of
the cylinder with an initial velocity equal to that of the fluid at
the particles’ initial positions (i.e. vc(t = 0) = uc). For crit-
ical Stokes number estimates in viscous flow (Stc,ν), a single
‘point’ particle was seeded on the stagnation streamline for each
St tested, and the St was incremented by 0.0001 until a particle
was able to reach the stagnation point, following the ‘classi-
cal’ idea of Taylor [10]. In the seeding zone, the fluid velocity
was always within 0.01% of the uniform flow condition, i.e.
(u,v,w) ≈ (U∞,0,0). Particle trajectories were obtained by in-
tegrating (11) and (18) using an algorithm based on the explicit
Runge-Kutta (4,5) pair formula of Dormand and Prince [3]. The
fluid velocity and the velocity gradient at the particle centre (uc
and ∇uc) were obtained with a linear piecewise spatial inter-
polation of the mean DNS fields, which generates continuous

1MATLAB R© is a registered trade mark of The MathWorks Inc., Nat-
ick, Massachusetts, U.S.A.
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Figure 3: Capture efficiencies considering inertia and finite par-
ticle size (ηIN ) for sediment-type particles (ρ+ = 2.6) as a func-
tion of St (or rp) for (a) Re = 10 and (b) Re = 1000.

fields at any position in the domain. The time-step always satis-
fied ∆t < 0.1 St, a requirement for accurate simulation of parti-
cle motion [2]. Particles were deemed to be captured when they
touched the collector (i.e. when their centre came within one
particle radius of the collector surface). Capture efficiency was
estimated using equation (1) after all the non-captured particles
had exited the domain.

Inertial Effects on the Efficiency of Capture of Aquatic-type
Particles

Here, we describe the effect of inertia on the capture efficiency
of aquatic-type particles (ρ+ ∼ O(1)) over ranges of Re and St
(or rp) common to aquatic systems. The results are presented in
comparison to the capture efficiencies estimated by considering
only direct interception [4, 5].

We found neutrally-buoyant particles (ρ+ = 1) follow almost
perfectly the trajectories defined by the mean streamlines. The
difference of particle capture efficiency compared to that of pure
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Figure 4: Graphical analysis of the centrifugal drift that induces
a reduction in capture efficiency for sediment-type particles
with weak inertial influence (ρ+ = 2.6, St = 0.11, rp = 0.02,
Re = 1000). Plot of the trajectory of a particle with weak in-
ertia influence (shown in black) that is released on the limiting
streamline for direct interception [4, 5] of particles of that size
(shown as a dotted line). The particle with weak inertial influ-
ence (shown in black) separates from the limiting streamline,
but does not reach the collector and drifts centrifugally, there-
fore decreasing the capture efficiency with respect to direct in-
terception. The capture position of a neutrally-buoyant particle
of the same size (shown in grey) and the maximum angle of
capture for direct interception (αc,DI) are also indicated.

direct interception is less than 0.1% for Re6 1000 and rp 6 1.5.
For the Re tested here, the strength of the velocity gradients
is not sufficient to cause particles to deviate from effectively
perfect tracer behaviour and only direct interception should thus
be considered in this case [4, 5].

For the case of sediment-type particles (ρ+ = 2.6), as expected,
inertia increases capture efficiency with increasing St (figure 3);
the vertical lines labelled as P in this figure show the points at
which the capture efficiency increases by 10% relative to direct
interception. Note that this 10% increase occurs before reaching
the critical Stokes number for viscous flow Stc,ν. At the critical
Stokes value, the increase in capture efficiency reaches 50% for
Re = 10 and 100% for Re = 1000; the maximum increase in-
duced by inertia is as large as 500% for Re = 1000 (figure 3b).
Aquatic-type particle dynamics differ from those of aerosols,
such that the increase of ηIN with St does not approach the limit
of very high particle inertia (ηIN,max).

Inertia can diminish capture efficiency under certain conditions
due to the particle-phase compressibility [6]. In our tests for
ρ+ = 2.6 and Re & 100, inertia initially reduces the capture effi-
ciency relative to direct interception before an increase occurs at
higher St; the vertical line labelled as N in figure 3(b) shows the
St at which the capture efficiency decreases by 10% compared
to direct interception. For Re = 1000, the reduction occurs in
the range 0.001 . St . 0.17, and is as large as 40%. This reduc-
tion in capture efficiency occurs as particles drift away from the
collector due to centrifugal acceleration [6]. The effect is illus-
trated in figure 4, which displays the trajectory of a particle with
weak inertial influence (St = 0.11 and rp = 0.02) which is re-
leased on the outer-most streamline that allows capture of neu-
trally buoyant particles of this size (the limiting streamline for
direct interception defined by Espinosa-Gayosso et al. [4, 5]).

Conclusions

For aquatic-type particles, we have used a Lagrangian anal-

ysis to estimate the influence of inertia on particle capture.
We have shown that the velocity gradients for Re 6 1000 are
not strong enough to induce significant deviations of neutrally-
buoyant particles from a perfect-tracer trajectory, such that the
only mechanism of capture for neutrally buoyant particles is di-
rect interception. When the particle density ratio is similar to
that of sediment in water, the effects of inertia are two-fold: (i)
inertia augments the capture efficiency when the Stokes num-
ber is sufficiently large, and (ii) counter-intuitively, inertia can
reduce capture for particles with weak inertial influence, i.e.,
lower St. Inertial effects appear at values of St much lower than
the critical value. At the critical Stokes number, the increase
in capture efficiency exceeds 50% for Re > 10. The impact of
particle inertia on capture is maximised when St > Stc,ν and can
result in as much as a six-fold increase in capture efficiency.
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