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Abstract

The instabilities of the sidewall boundary layer in a rapidly ro-
tating split cylinder are studied numerically. Axisymmetric re-
sults are studied extensively where a variety of different states
are found. In the basic state, the interior flow is in solid-body
rotation with the mean rotation rate of the two cylinder halves.
The sidewall boundary layer of the basic state is compared with
theoretical results. For sufficiently fast mean rotation and large
enough differential rotation between the two halves, instabilities
in the boundary layer appear. These instabilities result in peri-
odic and quasi-periodic states in different parameter regimes.
The instabilities are localized in the boundary layer, but they
may transport shear into interior if their associated frequencies
are less than twice the mean rotation frequency, and then only
in the form of inertial wave beams along directions determined
by the frequencies.

Introduction

The structure of the sidewall boundary layer in a rapidly rotat-
ing cylinder subjected to some differential rotation has attracted
much attention because of both its practical and fundamental
importance. Stewartson [8] showed that when the sidewall ro-
tates at a rate slightly faster than the two endwalls, the side-
wall boundary layer has a sandwich structure consisting of an
inner layer whose thickness scales as Re−1/3 (where Re is the
rotation Reynolds number based on the mean angular velocity
of the cylinder, its radius and the kinetic viscosity of the fluid)
and an outer layer with a thickness that scales as Re−1/4. The
Re−1/4 layer is where the perturbation to the azimuthal velocity
is adjusted and the inner Re−1/3 layer is needed to adjust the
secondary meridional flow. The boundary layers on the end-
walls are of Ekman type, and scale as Re−1/2.

Hocking [3] considered another differentially rotating cylinder
flow consisting of a split cylinder with one half rotating slightly
faster than the other. His analysis considered the case of an in-
finitely long cylinder in which case the meridional flow in the
sidewall layer due to the flows being pumped out of the Ek-
man layers at the ends was negligible. The finite split cylinder
problem was later addressed by van Heijst [9] who conducted
the boundary layer analysis in a finite fully enclosed split cylin-
der, showing that in the limit of small differential rotation, the
Re−1/4 layer is where the interior flow adjusts to the sidewall,
and the jump discontinuity due to the split in the cylinder is ac-
counted for in the inner Re−1/3 layer. From a linear boundary
layer analysis perspective, where the split in the finite enclosed
cylinder occurs determines what roles the Re−1/3 and Re−1/4

layers play. Van Heijst [9] showed that if the split is at half
height, then the Re−1/3 provides the matching of the interior
flow to the discontinuous sidewall boundary condition as well as
accounting for the induced meridional flow, and that the Re−1/4

layer is absent. On the other hand, if the split is at one of the
corners where an endwall meets the sidewall, then the Re−1/3

layer is absent and the matching is completely accomplished by
the Re−1/4 layer.

The theoretical boundary layer analysis aims to describe the
steady axisymmetric basic state, and this is done in the limit
of very small differential rotation so that the equations can be
linearized about the state of solid-body rotation. Of course, this
raises the question as to what happens as the differential rotation
is increased; how does the flow lose stability and transition to
turbulence? Hart and Kittelman [2] provide some insights from
flow visualization experiments in the case where the rapidly ro-
tating cylinder has the top endwall rotating faster. Lopez [4]
simulated this and other related flows solving the axisymmet-
ric Navier–Stokes equations, but subsequently it was shown [5]
that the primary instabilities are three-dimensional in nature. Is
this also the case when the split is at the cylinder half height?
Here, we not only focus on the nature of the primary instabilities
of the split cylinder flow, but also address how these instabili-
ties, which are associated with both the sidewall boundary layer
flow and the corner flow in the slow half cylinder (which is not
analytically amenable), affect the interior flow.

For these rapidly rotating split cylinder problems, in the absence
of instabilities the interior flow is in solid-body rotation with the
mean rotation rate of the two cylinder halves. For fast enough
mean rotation, disturbances from instabilities can only penetrate
into the interior if their frequencies are less than twice the mean
rotation frequency, and then only in the form of inertial wave
beams along directions determined by the frequencies. In the
inviscid limit, this is governed by the inertial wave dispersion
relation [1], but for large but finite Re and finite differential ro-
tation, viscous and nonlinear effects come into play, as well as
mean-flow deformations leading to bulk flows that have non-
constant angular speed. Furthermore, how these inertial wave
beams feed back on the boundary layer and corner instabilities
is not obvious, and we try to address this.

Governing Equations and Numerical Methods

Figure 1: Schematic of the flow system. The inset shows az-
imuthal vorticity contours of an axisymmetric time-periodic
state at Re = 105, Ro = 0.110 and γ = 1.

Consider the flow in a circular cylinder of radius a and height
h, completely filled with a fluid of kinematic viscosity ν. The
cylinder is split in two, the top half rotates with angular speed
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Figure 2: Profiles of the regularized sidewall boundary con-
dition for the azimuthal velocity, v(z) = 1+Ro tanh(εz), with
Ro = 0.26 and ε as indicated.

Ω+ω and the bottom half with angular speed Ω−ω. Figure 1
shows a schematic of the flow.

The Navier–Stokes equations, non-dimensionalized using a as
the length scale and 1/Ω as the time scale, are

(∂t +uuu ·∇)uuu =−∇p+1/Re∇
2uuu , ∇ ·uuu = 0 , (1)

where uuu = (u,v,w) is the velocity field in polar coordinates
(r,θ,z) ∈ [0,1]× [0,2π]× [−γ/2,γ/2], and p is the kinematic
pressure. There are three governing parameters:

Reynolds number Re = Ωa2/ν,

Rossby number Ro = ω/Ω,

aspect ratio γ = a/h.

(2)

The boundary conditions are no-slip:

z = 0.5γ : (u,v,w) = (0,r(1+Ro),0),
z =−0.5γ : (u,v,w) = (0,r(1−Ro),0),
r = 1,z ∈ (0,0.5γ) : (u,v,w) = (0,1+Ro,0),
r = 1,z ∈ (0,−0.5γ) : (u,v,w) = (0,1−Ro,0).

(3)

The governing equations (1) have been solved using a second-
order time-splitting method, with space discretized via a
Galerkin–Fourier expansion in θ and Chebyshev collocation in
r and z:

uuu(r,θ,z, t) =
2nr+1

∑
n=0

nz

∑
m=0

k=nθ/2−1

∑
k=−nθ/2

ûuumnk(t)Ξn(r)Ξm(z)eikθ, (4)

where Ξn is the n-th Chebyshev polynomial. The spectral solver
is based on that described in Ref. [7] and it has been used ex-
tensively in a wide variety of enclosed cylinder flows.

The jump discontinuity in the sidewall boundary condition for
the azimuthal velocity is problematic when solving the sys-
tem using a spectral method as it leads to Gibb’s phenomenon.
This can be remedied by regularizing the boundary condition by
smoothing out the jump over a small distance, in essentially the
same way as the corner discontinuity between a sidewall and a
differentially rotating endwall is regularized [6]. Specifically,
we replace the boundary condition for the azimuthal velocity
with

v(r = 1,θ,z) = 1+Ro tanh(εz), (5)

where ε governs the distance over which the jump is smooth out.
Figure 2 shows the azimuthal velocity profile at the sidewall for
Ro= 0.26 and various values of ε. Figure 3 shows the azimuthal
vorticity for Re= 104, Ro= 0.26, γ= 1 with ε= 50 and ε= 200.
There is little difference in selecting ε > 50, and for the rest of
the results presented here, we fix ε = 50.

(a) ε = 50

(b) ε = 200

Figure 3: Contours of the azimuthal vorticity η of the basic
state at Re = 104, Ro = 0.26, γ = 1 and two values of ε. There
are 20 positive (red) and 20 negative (blue) contours that are
quadratically spaced in the range η ∈ [−5,5].

A global quantitative measure of the flow is provided the kinetic
energy of the solution. In general, the modal kinetic energy of
the Fourier modes corresponding to azimuthal wavenumber m
are

Em = 0.5
∫ 0.5γ

−0.5γ

∫ 1

0
uuum ·uuu∗mrdrdz, (6)

where uuum is the mth Fourier mode of the velocity field and uuu∗m
is its complex conjugate. For axisymmetric states, only E0 is
non-zero.

Sidewall Boundary Layer Structure

In the basic state, BS, the interior flow is in solid-body rotation
with approximately the mean rotation rate of the two cylinder
halves when Ro is small. In this section we examine how the
basic state varies with Ro, Re and γ.

Van Heijst [9] used boundary layer analysis to solved the shear-
layer structure of a finite cylinder split in two differentially ro-
tating parts. The main effect of including the two lids is the or-
der (Re−1/2) transport that appears in the Stewartson layer com-
ing from the respective Ekman layers. He described how the
combination of the Re−1/4 and Re−1/3 boundary layers match
the boundary conditions. For the case we study here, with the
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Figure 4: Scaled sidewall boundary layer thickness, δRe−1/3

along the length of the cylinder for Ro = 10−5 and γ = 1.

discontinuity in the middle of the cylinder, only the zero field
of the Re−1/3 appears and the Re−1/4 layer is absent. All the
boundary layer analysis results were obtained in the Ro→ 0
limit and neglecting curvature and inertia.

In our simulations, the Reynolds number is finite, but we con-
sider Re as large as 105. Figure 4 shows the sidewall bound-
ary layer thickness from our simulations. This boundary layer
thickness, δ(z), is determined as the radial distance from the
sidewall where the azimuthal vorticity first changes sign. The
results in the figure correspond to γ = 1 and Ro = 10−5. The
value of γ is not qualitatively very important, but Ro needs to be
small in order to approach the asymptotic regime considered in
the boundary layer analysis. The figure plots δ(z)Re−1/3, and
shows that the asymptotic scaling is achieved for Re & 104.

The Rossby number affects the velocity profile and boundary
layer thickness. For Ro < 0.001, the flows are almost reflection
symmetric about the half-height (perfect reflection symmetry is
only present at Ro = 0). For these low Ro cases, the flow is
centrifuged radially outward from the top and bottom endwall
layers and continue from the corners towards the half-height
forming the sidewall boundary layer. The outflow from the
faster rotating (top) endwall is stronger, and so there is a slight
overshoot in the top-half sidewall boundary layer flow past the
cylinder split at half-height when Ro is small. For Ro & 10−3,
this overshoot leads to departures from the Ro� 1 analysis and
the flow is significantly different. In particular, the basic state
loses stability in a variety of ways, and the bottom corner region
which is analytically inaccessible becomes dynamically impor-
tant as the flow from the upper half of the sidewall boundary
layer reaches it.

Axisymmetric Instabilities of the Sidewall Layer

The regime diagram, figure 5, shows the loci of different so-
lutions in (Ro,γ)-parameter space for Re = 105. For small Ro
and γ, the basic state is stable and it loses stability to two dif-
ferent time-dependent states, LC1 and LC2, as either Ro or γ

are increased. For larger γ and smaller Ro, there is a supercriti-
cal Hopf bifurcation to the limit cycle LC1 with frequency ω1,
whereas for larger Ro and smaller γ, there is a different super-
critical Hopf bifurcation to the limit cycle LC2 with frequency
ω2. At about Ro = 0.8 and γ = 0.6, there is a point where the
two Hopf bifurcations occur simultaneously, and as is typical in
double Hopf bifurcations, there is a region of parameter space
anchored at the double-Hopf point and delimited by Neimark-
Sacker bifurcation curves where a mixed mode exists. Since ω1
and ω2 are generically incommensurate, the mixed mode QP is
quasi-periodic. The regime diagram also includes regions fur-
ther removed from the double-Hopf point where QP has under-
gone a pair of period-doubling bifurcations to states QP2 and
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Figure 5: Regime diagram in (Ro,γ)-space, showing the various
axisymmetric states found near the double Hopf bifurcation for
Re = 105.

QP4.

The oscillations in LC1 are localized at the bottom corner where
the sidewall and bottom endwall meet. There is a periodic
swelling of the sidewall boundary layer near the corner, as can
be seen in a snap-shot of the azimuthal vorticity at Re = 105,
Ro = 0.11 and γ = 0.5 shown in figure 6(a). The frequency
ω1 ≈ 1.88. Linear inviscid theory for rapidly rotating flow [1]
gives that inertial waves can be generated in rapidly rotating
flows if the perturbation frequency is less than twice the an-
gular speed Ω of the flow. Since we non-dimensional time
with Ω, disturbance frequencies less than two are expected
to generate inertial waves, and these should obey the disper-
sion relation giving the angle at which they propagate with re-
spect to the rotation axis as α = arccos(ωdisturbance/2). For
ωdisturbance = ω1 ≈ 1.88, this gives that the inertial wave beams
should propagate into the bulk at an angle α1 ≈ 20◦, emanating
from the bottom corner region where the periodic disturbance
associated with the Hopf bifurcation is localized. Indeed, fig-
ure 6(a) shows such inertial waves.

The LC2 state is very different to LC1. To begin with, the os-
cillations are localized in the deep sidewall boundary layer just
below the split at half-height. They consist of a periodic train
of roll vortices traveling down the sidewall all the way to the
bottom corner. Furthermore, the frequency associated with this
oscillation is ω2 ≈ 4.23, which is too high to generate inertial
waves in the interior, which continues to rotate as an essentially
solid body, as in the basic state BS. Figure 6(b) shows that all
the azimuthal vorticity is contained inside the top and bottom
Ekman layers and in the sidewall layer, and the LC2 downward
traveling rollers in the deep sidewall layer are clearly evident.

For the quasiperiodic state QP, found after crossing either of
the Neimark-Sacker bifurcation curves, figure 6(c) illustrates
the behavior of the mixed mode. The instabilities are present
in the bottom half of the sidewall as in LC2 superposed with the
instability in the corner resulting from LC1 that drives inertial
waves. A power spectral density of the time-series of E0 for QP
comprises of strong peaks at frequencies ω1 and ω2 (their rela-
tive strength depend on the distance in (Ro,γ)-space the QP case
under consideration is from the two Neimark-Sacker curves),
and their linear combinations. The peaks at the linear combi-
nations are weaker than the peaks at ω1 and ω2, but there can
be several peaks at frequencies mω1 + nω2 < 2 (m and n inte-
gers) and if they are sufficiently strong, they can also generate
inertial waves at angles arccos(mω1 +nω2)/2. For the example
shown in figure 6(c), these other frequencies are too weak and
the related inertial waves are negligible compared to the inertial
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Figure 6: Snapshots of η at Re = 105 and Ro and γ as indicated.
Ten cubically spaced contour levels are in the range η∈ [−5,5].

wave generated by the peak at ω1. Note that the frequencies ω1
and ω2 are (weak) functions of Ro and γ, and so the angle of
the inertial wave in figure 6(c) differs from that in figure 6(a).
The dependence of ω1 and ω2 on Ro and γ can lead to low or-
der frequency lockings and with combinations mω1 +nω2 that
gives strong peaks at subharmonics of ω1. This seems to be the
case with QP2 and QP4 which have strong peaks at frequencies
ω1/2 and ω1/4, respectively. Figure 6(d) shows a snap-shot of
azimuthal vorticity of a QP2 case, with an inertial beam gener-
ated by ω1 with angle α ≈ 20◦, very similar to the QP case in
figure 6(c), and another beam at angle α ≈ 62◦ corresponding
to the peak at ω1/2. The QP4 case shown in figure 6(e) has an
even more complicated inertial wave structure, but one can de-
cipher beams at about 20◦, 45◦, 62◦ and 76◦, but they are not as
clean as in the other cases, probably due to interference between
the beams and their reflections, and well as further contributions
from other linear combinations of frequencies.

Conclusions

The simulations of a rapidly differentially rotating split cylin-
der flow have identified a number of instabilities of the side-
wall boundary layer, and some of these are able to transport
shear throughout the whole cylinder, overcoming the Taylor-
Proudman constraint if the frequencies associated with the in-
stabilities are less than twice the mean rotation frequency. Fu-
ture investigations shall examine the role of three-dimensional
perturbations.
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