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Abstract

Over the last decade there has been a renewed interest in under-
standing the entrainment process in turbulent shear flows [5].
Even though there are differences between the way different
shear flows (such as jets, wakes, boundary layers and shear-
free flows) develop [14], the origin of these differences is not
clear. Here, employing experimental data from an axisymmetric
turbulent jet and a turbulent boundary layer, we present condi-
tional velocity profiles at the tubrbulent/non-turbulent interface
(TNTI) and quantitatively reveal the differences encountered by
the two different shear flows. In particular, we examine the role
of radial velocity in the entrainment process which is present
in jets and is absent for boundary layers (and wake flows). We
consider the turbulent kinetic energy budget for the axisymmet-
ric jet to illustrate the dominant role of ‘radial advection’ com-
pared to ‘streamwise advection’, clarifying the important role
of the radial velocity at the interface in jet entrainment which is
absent in boundary layers. Subsequently, we classify the shear-
flows for entrainment based on the large- and small-scale mech-
anisms. Finally, a simplified approach by which the scaling of
‘small scale’ entrainment velocity can be used to derive the well
known overall ‘large scale’ spreading of turbulent shear flows is
presented.

Introduction and objectives

Research in the area of entrainment has undergone a dramatic
increase over the past few years [5], primarily fuelled by large
scale computations (e.g., [6, 19]) and particle image velocime-
try (PIV) measurements (e.g., [20, 2, 15, 3]). The turbulent/non-
turbulent interface (TNTI) is suggested to be dominated by
small-scale, viscous, diffusive activity called ‘nibbling’ [20],
where nibbling is the mechanism by which ‘non-turbulent fluid’
is converted into ‘turbulent fluid’[5]. Classically, however, en-
trainment has been attributed to large-scale mechanisms collec-
tively referred to here as ‘engulfment’[18]. The main reason for
considering large-scales is that the evolution of different canon-
ical flows such as turbulent jets, wakes and boundary layers
are different and this evolution can be described by the large-
scale mean properties of the flow. Furthermore, these turbulent
flows have been observed to be dominated by large-scale coher-
ent structures. A small-scale-only mechanism would suggest a
development that is similar for different shear flows which is
contrary to the observations. To reconcile this, Philip et.al [14]
suggested a ‘multi-stage’ entrainment process which is different
for different shear flows, in which the initial stages are large-
scale dominated and the final stage is always nibbling. Another
way to accommodate the large- and small-scale process is by
considering entrainment as a ‘multi-scale’ phenomenon, which
can be evidenced by filtering the equations of motion at differ-
ent length scales (where engulfment is defined with largest and
nibbing by the smallest filter size, respectively)[15]. A fractal
TNTI surface (e.g, [7]) following [16] and [13] would be con-
sistent with such a multi-scale approach.

As such, the first two objectives of this paper are: (i) to char-
acterise differences between jets and boundary layer flows con-
cerning entrainment across TNTI, thus testing the validity of the
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Figure 1: Kinetic Energy contours demarcating the turbulent
from the non-turbulent regions. (a) A boundary layer flow from
left to right at Reτ = 14500. (b) Jet flow from left to right, at
Red = 3000.

‘multi-stage’ entrainment process[14]; and, (ii) extend the clas-
sification of shear flows for entrainment studies by Philip et.al
[14] into various large and small scale contributions.

Another interesting fact that has emerged from the recent stud-
ies on TNTI is the scaling of velocities at TNTI. It has been
shown that the ‘entrainment velocity’ (velocity of the fluid rel-
ative to the velocity of TNTI) scales with the local fluctu-
ating fluid velocities in shear-free flows and boundary layers
[9, 15, 3]. This suggests that the overall entrainment or the
consequent growth/spreading of the various flows could some-
how be calculated from the scaling of the ‘local’ entrainment
velocity. Classically, however, the growth/spreading are only
predicted from the mean quantities. Therefore, our final ob-
jective, (iii) is to provide a simple derivation starting from the
scaling of ‘local’ entrainment velocities leading to the overall
growth/spreading rates.

Comparing TNTI properties of boundary layers and jets

For the TNTI analysis we employ the following experimental
databases. The turbulent boundary layer database is the same as
that used by [7, 2, 3] and [15]. An example is shown in figure
1(a) where the flow is from left to right, at friction Reynolds
number Reτ =uτδ/ν = 14500. Here, the friction velocity uτ =√

νdU/dz|z=0 is based on the kinematic viscosity ν and wall
shear, free stream velocity (U∞) is 20 m/s and boundary layer
thickness (δ) is 0.35mm. The database for axisymmetric jets
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Figure 2: Three different interface detection criteria for applied
to the volumetric data set of tomo-PIV.
is from the planar PIV and the tomographic-PIV measurements
of [10] and [11]. An example from planar PIV of jet is shown
in figure 1(b), where the jet diameter d = 2mm and Reynolds
number Red ≈ 3000 (based on the inlet velocity, Uo = 23m/s, d
and air as the working medium).

Figure 2 shows the jet interfaces based on three different de-
tection criteria[1]: velocity criterion, Ũ/Uo = 0.03 (in violet
colour and the region with value > 0.03 is turbulent); vorticity
criterion, |ω|r 1

2
/Uc = 0.17 (in blue colour, where, |ω| is the total

vorticity magnitude, r1/2 is the radial location where the centre
line velocity Uc is 1/2, and values > 0.17 is termed turbulent);
and kinetic energy (KE) criterion, |U|2/U2

o = 0.003 (shown in
green colour, where, |U| is the total velocity magnitude and val-
ues > 0.003 considered turbulent). Here, we utilise the KE cri-
teria following [2] and [15], who provide a detailed discussion
of the criteria for TNTI detection. The interfaces identified by
the KE threshold are also shown in figures 1(a) and (b).

Using large-scale vortex rod calculations Philip et.al [14] has
shown that there is a radial inflow into the turbulent region,
whereas no such inflow exists in the case of wakes. It is well
known that similar to wakes, there is no radial inflow in bound-
ary layers (in fact the mean wall-normal velocity is towards the
non-turbulent region in BLs) [18]. The radial inflow velocity
is a major difference between jet and BL (as well as wake) en-
trainment.

To illustrate the radial velocity in jets, figure 3 shows an in-
stantaneous TNTI (where the mean flow is in x-direction) along
with velocity vectors on a plane in the irrotational region. It
is evident that on this plane the flow is towards TNTI. Con-
sequently radial inflow cannot be ignored while studying en-
trainment in jets, which is virtually non-existent in wakes
and boundary layers. To further support this point, figure 4
shows the advection terms in the KE balance of the axisym-
metric jet from tomo-PIV measurements, namely, the radial
advection term −0.5(Ur∂⟨|u|2⟩/∂r), the axial advection terms
−0.5(Ux∂⟨|u|2⟩/∂x), and the their sum, where, |u| is the mag-
nitude of the fluctuating velocity vector. It is clear that even
though the radial component is negligible towards the centre of
the jet, it makes a significant contribution at the edge of the tur-
bulent region (c.f., inset of figure 4). Furthermore, close to the
boundary the radial advection is counter-balanced by turbulent
diffusion (not shown here)[17].

Instantaneous velocity measurements (Ũ - streamwise and W̃ -
wall-normal/radial) conditioned at the TNTI (⟨Ũ⟩ and ⟨W̃ ⟩, re-
spectively) are more suitable to quantify the effects of the radial
velocity. Figure 5 shows the conditional streamwise (top) and
radial (bottom) velocities across the TNTI for the jet. Equiva-
lent profile for the boundary layer is shown in figure 6. Note that
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Figure 3: The contours show TNTI along with an arbitrary
plane along the axial direction in the non-turbulent region and
velocity vectors over that plane. The radial incoming flow
through the plane is evident, and contributes to the overall en-
trainment.
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Figure 4: The advection terms from the KE balance. Inset
shows the expanded view of the edge of the jet where the ra-
dial advection dominates the axial one, unlike in the core.

zi is the wall-normal or the radial location of the TNTI. For the
streamwise velocity both the jet and the BL shows the expected
jump in velocity (∆Ũ); however, normal velocities show rather
distinct features. In the case of jets, in the non-turbulent region
⟨W̃ ⟩ becomes approximately equal to the radial velocity, unlike
in BLs where ⟨W̃ ⟩ must approach zero in the far field [3]. Con-
sequently, for jets (c.f bottom figure 5) we represent the peak
velocity in the NT region as a sum of the radial velocity and
an eddy/engufment velocity (denoted by ∆Ũr(eddy), whereas for
BLs (c.f bottom figure 6) there is only eddy/engufment velocity
(denoted by ∆W̃(eddy)). It is recalled that the radial velocity is
non-existent in BL flows.

Interestingly, the ratio ∆W̃(eddy)/∆Ũ for BLs is ≈ 0.1, which is
the same as the asymptotic value reported in [3] using a range of
Reτ in BLs. A similar ratio for the present jet is, ∆Ũr(eddy)/∆Ũ
≈ 0.17. Even though the jet measurements are only at one Re,
the fact that the ratios in BL and jet is close, is rather suggestive
of a similar (perhaps small-scale) mechanism that is present at
the TNTI in both jets and BLs. A range of Re studies in jet
flows is required to ascertain this. Consequently, it is suggested
that if the radial velocity component from the jets is removed,
the mechanism of entrainment in both jets and BLs could be
similar. These distinguishing features motivate classification of
the shear-flows into three different categories depending on the
large- and small-scale entrainment features.

Classification of shear flows for entrainment

The premise here is that large-scales determine the rate of en-
trainment while the small-scale eddies residing on the interface
of turbulent/non-turbulent region are responsible for the conver-
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Figure 5: Conditional velocities at TNTI for a jet. Top: stream-
wise, and bottom: radial velocities.

sion of the non-turbulent fluid into a turbulent state. It will be
argued that large-scale or bulk motion is responsible for bring-
ing the non-turbulent fluid close to the interface, where as the
small-scale ‘nibbling’ eddies at the interface act towards its the
final conversion to turbulent fluid. Accordingly, we consider the
large- and small-scale eddies as contributing towards a ‘multi-
stage’ complimentary entrainment process, rather than a com-
peting one.

The large-scale motions of the flow are envisaged to have three
different roles in the entrainment process: L1 - producing a
net inflow towards the interface (such as in jets, where there
is a mean radial inflow); L2 - entrapment or ‘engulfment’ of
the non-turbulent fluid; and L3 - increasing the surface ares of
the interface by large-scale contortions. On the other hand, the
small scales seem to play two roles: S1 - the well accepted role
of converting the NT fluid to turbulent one; and S2 - ‘reaching
out’ or ‘diffusing’ into the NT region. The challenge is to un-
derstand the relative importance of each of these processes in
different flows.

As such, for the purpose of entrainment studies, shear flows are
divided into three categories (also see, [14]): (1) where there
is a bulk motion in the NT region towards the interface, such
as in jets, where all processes L1, L2, L3 and, S1, S2 are likely;
(2) where there is no bulk NT motion, such as, in wakes and
boundary layers, where processes L2, L3 and S1, S2 are possibly
active, and finally (3) where there is no large-scale motion, such
as, in the oscillating-grid or shear-free flows (e.g., [8]), where
only the processes S1, S2 are present.

Accordingly, figure 7 presents schematics of a jet on the top as
panel 1, wakes and boundary layer flows as panel 2, and the os-
cillating grid or shear-free flow as panel 3, corresponding to the
three categories. The large scale process of radial inflow (L1)
in jets is schematically shown in panel 1, whereas eddying mo-
tion (L2) is present in both 1 and 2. The small-scale processes
act in all the cases, however, shear-free flows have exclusively
small-scale processes. Also shown are the order of magnitude
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Figure 6: Conditional velocities at TNTI for a BL. Top: stream-
wise, and bottom: wall-normal velocities.

of length scale of eddies, which are of order of large-scale, δ in
shear flows, whereas it is of order of Taylor’s microscale, λ in
the shear-free flows. The corresponding strain rates, say S, over
a time scale of 1/S, will produce length scale of order

√
ν t un-

der the action of viscosity (where, ν is the kinematic viscosity
and t, time). This implies that the interface thickness in shear
flows are the order of λ and that in shear-free flows is η (where,
η is the Kolmogorov length scale)[16, 4].

Spreading of shear flows

Both the ‘multi-stage’ [14] and ‘multi-scale’ [15] processes
suggest that the final/smallest-scale process is governed by the
local entrainment velocities. This motivates us to derive the
overall large-scale growth of various shear flows from the scal-
ing of the small-scale velocities. There are several valid meth-
ods which predict the spreading of free shear flows, such as jets
and wakes, most of which rely on the equations of the conserva-
tion of overall momentum and/or energy (e.g., [18, 17]) with no
recourse to small-scale motions. We, however, follow a succinct
approach due to Landau and Lifshitz [12] for turbulent wakes,
which includes elements of diffusion and extended here for jet
and boundary layers including the scaling of local velocities at
the TNTI.

Consider an axisymmetric turbulent wake (c.f. figure 7, panel
2), where δ is proportional to the radial width of the turbulent
region, x the axial direction, U the mean flow in x (here assumed
to be a constant) and u the order of the velocity fluctuations near
the interface. Considering the averaged streamlines,

dδ
dx

∼ u
U
. (1)

Since drag ∼ U uδ2 is constant, U u ∼ δ−2, which along with
the above equation gives the standard result that δ ∼ x1/3. For
the case of turbulent jets since u ∼ U , the equation (1) again
gives the standard result, δ ∼ x. In the case of turbulent bound-
ary layers, the relevant fluctuating velocity scale at TNTI is uτ.
Now, if we use any empirical relation for the variation of uτ

with the streamwise distance x, say, the 1/7 law (C f ∼ Re−1/7
x ),

u2
τ ∼ x−1/7. Thus, with u ∼ x−1/14 and U equal to the constant
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Figure 7: Classification of flows for the purpose of entrain-
ment. Top figure, panel 1 : jet flow which exclusively includes
the radial inflow process L1, as well as L2, L3, S1, and S2.
Panel 2, wakes and boundary layers containing processes
L2, L3, S1, and S2 (refer main text for their definitions). Panel
3, oscillating-grid/shear-free flows, which has no large-scale
processes but only small-scale ones S1 and S2.

free stream velocity, equation (1) shows that δ ∼ x13/14, which
is again close to the experimental observations.

The important quantity in equation (1) is u, which is the veloc-
ity scale around TNTI, and has been taken to be the fluctuat-
ing component in the above analysis, consistent with the recent
experimental evidence. Furthermore, under the local approx-
imation of turbulent production equal to dissipation (with the
local velocity scale being u), it is evident that (e.g, [17]), indeed
Taylor microscale λ is the relevant length scale at the interface.
So we arrive at the same conclusion as in the previous section,
however from a different point of view that links the spreading
in shear flows with the smaller scales present at the interface.
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