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Abstract

Computational fluid dynamics (CFD) is a highly popular tool
used in fluid research. It approaches fluid systems from a con-
tinuum point of view, with focus on the bulk macroscopic prop-
erties and behaviour. On the other hand, microscale modelling
methods like the discrete element method (DEM) focus on the
particle level — particle properties, rather than bulk constitu-
tive relations are needed. While a DEM model is capable of
reproducing bulk behaviour similar to that from a continuum
model, this is only possible at great computational costs as a
very large number of discrete particles would be needed. There
exist many other methods which attempt to bridge the different
lengthscales, for example the smoothed-particle hydrodynamics
(SPH) and dissipative particle dynamics (DPD) methods. This
paper describes how the smooth dissipative particle dynamics
(SDPD) method, a mesoscale hybrid of both the SPH and DPD
methods, could be used to numerically simulate a solid-fluid
system with changing temperature like melting ice.

Introduction

As technology advances, the study of fluids via numerical ex-
periments has become increasingly viable, yielding insights
previously unattainable. One of the oldest, and most popu-
lar tools today for simulating fluid problems is computational
fluid dynamics (CFD). CFD simulations involve dividing up the
simulation domain into a mesh, and solving the Navier–Stokes
equations using finite differences across the entire mesh in a se-
ries of spatial and temporal iterations. The method, as a whole,
is a continuum approach to fluid problems as it focuses on, and
is defined by, bulk macroscopic characteristics. Information can
be obtained from CFD simulations only up to a scale as fine as
the mesh used, and any finer details are lost. One reflection
of this is in how turbulence is treated — turbulence flows in-
volve a variety of length scales, such that very fine meshes are
required to obtain higher resolution for reproducing a measure
of the complexity of such flows. This is very expensive com-
putationally, and hence numerical models are instead incorpo-
rated to approximate the small-scale effects that are not other-
wise simulated.

Rather than a continuum approach, microscopic numerical
methods like the discrete element method (DEM) proposed in
1979 by Cundall and Strack [3] take a discretised view of fluid
problems. Admittedly such modelling methods may not be the
immediate solution turned to for modelling fluid systems, as
they share a lot of similarities with molecular dynamics simu-
lation methods and are more commonly used when the fluid in
question is a particulate flow. However for these methods, the
focus is on the particle-level i.e. the discrete particles within a
fluid flow. Interparticle relations are governed by Newton’s laws
of motion, and the heavily dependent on microscale properties
like the particle stiffness, density or the coefficient of restitu-
tion. Naturally in contrast to CFD methods, information on
the microscale behaviour is available but such a great number
of particles are required to obtain enough information to reli-
ably derive information on the macroscale, that the resulting
computational costs are impractical. Another difference is that

these particle-based methods are generally not restricted to a
pre-defined mesh, and thus are better able to model spatially-
varying surfaces.

The smoothed-particle hydrodynamics (SPH) method is
particle-based, however it is generally regarded as a macro-
scopic modelling method.Developed in 1977 by Gingold and
Monaghan [6] and Lucy [11], SPH is similar to DEM in that the
fluid is modelled with discrete ‘particles’. Additionally, each
‘particle’ has an assigned smoothing length over which parti-
cle properties are summed according to a kernel function. In
this manner, shocks and discontinuities are smoothed out from
information derived from SPH simulations. This manner of av-
eraging the information over a larger length scale is the reason
for classing SPH as a macroscopic method.

In the middle ground exist the mesoscale modelling methods
which involve length scales larger than microscale, that tend to
be of greater physical interest. One notable mesoscale method
is the relatively recent dissipative particle dynamics (DPD)
method [5, 8, 12]. Introduced by Hoogerbrugge and Koelman
[8] in 1992, the DPD method treats the fluid ‘particles’ as clus-
ters of fluid. The Brownian motion typically seen in fluids is
modelled via a random force included in the interparticle equa-
tion of motion. This random force also ensures that the DPD
system maintains a constant temperature. However, the DPD
formulation allows only for isothermal systems, has no direct
relation to transport coefficients, and the physical parameters
involved are not clearly defined. An improved version of DPD
is the smoothed dissipative particle dynamics (SDPD) method
[1, 4, 10] proposed by Español and Revenga [4] in 2003, which
incorporates thermal fluctuations into an SPH system or, from
another point of view, allows for temperature-variation in a
DPD system as well as a straightforward physical interpreta-
tion.

In this paper the simple case of a melting block of ice is cho-
sen to assess the suitability of the SDPD method. Water has
been studied and utilised in many aspects of life around us,
and its solid phase is also a significant part of our environment.
Naturally, the transition between ice and water is a commonly-
encountered phenomenon. The melting process is particularly
interesting in terms of modelling, as it is a time-varying solid-
fluid system. The transition from solid ice to liquid water at 0◦C
is also significant as this is not spontaneous — a critical amount
of energy must be gained or lost before the phase change can
occur. Naturally, melting ice has been modelled before using
various numerical techniques [7, 9], but there are still insights
to be gained by modelling this everyday phenomenon using a
mesoscale particle method like SDPD. It is expected that while
the chosen ‘particle’ size will define the resolution of the simu-
lation, the meshless nature of this method may simulate the for-
mation and temporal variations of the solid-fluid interface more
closely.

The following sections first describe the general SDPD formula-
tion, followed by the specifics for implementation of an SDPD
model of a melting block of ice. The paper closes with some
anticipated results from this modelling method.



Smooth Dissipative Particle Dynamics

As with both the SPH and DPD methods, the SDPD system
models the system as a collection of N ‘particles’. Each particle
i can be considered to represent a cluster of fluid, with the corre-
sponding collective mass and velocity. The state Φ of the whole
system can be characterised by the set of particle positions xi,
particle velocities vi, and particle entropies Si, for i = 1 to N.
The equations of motion governing each particle i are then as
follows:

dxi = vidt , (1)

midvi = FCdt +FDdt +FR , (2)

and
TidSi = ∆QV dt +∆QCdt +∆QR . (3)

Equation (2), the momentum equation, is written as a sum of
conservative, dissipative and random forces FC, FD and FR. The
expressions for these are, assuming constant mass mi =m, given
as:
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where di and Pi denote the diameter and pressure of particle i
respectively, xi j = xi −x j is the vector going from the centre of
particle j to the centre of particle i and ei j is the corresponding
unit vector, and vi j = vi−v j is the relative velocity between the
two particles in the direction of xi j . Fi j is a positive function
related to the smoothing kernel function W (x) , defined as:

F(xi j)≡−(1/xi j)dW/dxi j . (7)

Additionally,
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where η is the dynamic viscosity, ζ is the bulk viscosity, kB
is the Boltzmann constant, Ti is the temperature of particle i,
and dWi j is a matrix of independent increments of the Wiener
process, with dWi j denoting its traceless symmetric part.

Equation (3), the entropy equation, is likewise written as a sum
of viscous, conductive and random components ∆QV , ∆QC and
∆R respectively. Their corresponding expressions are:
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where κ is the thermal conductivity and dVi j is an antisymmet-
ric, independent increment of the Wiener process.

Additionally, an equation of state is required to relate the inter-
nal energy and entropy of the system. The pressure and temper-
ature can then be determined from this equation of state. For
general cases, a Taylor expansion can be used, assuming that
the system state is close to the chosen reference state (pressure
P0, volume V0, temperature T0 and entropy S0):
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The subscript 0 refers to a reference state, while the adiabatic
bulk modulus β0, coefficient of thermal expansion α0 and heat
capacity at constant volume CV,0 determined from the internal
energy U as follows:
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The temperature T and pressure P of the system are then given
as:
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respectively.

Implementation for Melting Ice Model

First the physical system to be modelled has to be chosen —
in this case, an ice cube allowed to melt on a flat, horizontal
surface at room temperature. Initial conditions are that the ice
cube is at 0◦C, and the room temperature remains at 20◦C.

The ice cube will be modelled by particles held fixed in a crys-
talline structure. Each of these particles, with equal mass m and
radius r, represent a small cluster of ice. As long as they remain
in the solid phase, their spatial position will remain unchanged.
The solid flat surface beneath the ice can be modelled either by
a horizontal wall (assigned infinite mass) or a series of smaller
particles (radius rw < r) held permanently fixed in position. The
melted ice-water will be represented by the previously-ice par-
ticles, but no longer constrained spatially. The surrounding air
will not be modelled.

Parameters that need to be pre-determined include:

• the particle radius r, as this determines the resolution of
the numerical simulation results,



• the smoothing kernel function W (x) from which the func-
tion F(xi j) can then be determined using equation (7),

• the two independent increments of the Wiener process,
dWi j and dVi j, and

• the latent heat of fusion, U∗, required for the phase change
of a single ice particle at 0◦C.

U∗ is the product of mass m and the specific heat of fusion,
given in [2] as 334 J/g.

Taking the reference state to be at 0◦, the change in internal
energy can be set to the latent heat of fusion in equation (15).
The volume remains unchanged prior to melting, leading to:
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The change in entropy should be positive, so the critical change
in entropy S∗ required for the phase change is:
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The general numerical algorithm carried out at each timestep is
outlined as follows:

1. The force components FC, FD and FR, as well as the com-
ponents ∆QV , ∆QC and ∆QR are calculated based on the
values of xi, vi, Pi and Ti at the previous time-step, using
equations (4–6) and (12–14).

2. Equations (1–3) are used to update the values of xi, vi and
Si.

3. If the particle is still in the solid phase and the change
in entropy ∆Si = Si − S0 < S∗, then the temperature and
pressure are kept constant at T0 and P0 respectively. Oth-
erwise, if ∆Si ≥ S∗, the particle is then considered to have
changed from solid to liquid phase.

4. When the particle has entered the liquid phase, the pres-
sure Pi and temperature Ti are updated using equations
(19) and (20).

It must be noted that certain parameters may have different val-
ues before and after melting, for instance the dynamic viscosity
η, bulk viscosity ζ and thermal conductivity κ, so the appropri-
ate values should be used for particles in the liquid phase.

An important issue in melting is that the density of ice is less
than that of water, which results in melted liquid taking up a
larger volume than the equivalent mass in ice. This can be ac-
counted for by decreasing the density and increasing the particle
radius for the liquid phase, such that the mass remains constant.
This leads to an explicit increase in volume as the ice melts.

Anticipated Results

The discrete nature of SDPD will result in the simulated melt-
ing process appearing less ‘continuous’ than in reality. Both
the volume of ice melted (figure 1), as well as the temperature
profile (figure 2), will show jumps over time. Figure 1 shows a
sketch of the decreasing width of an ice block over time. Each

Figure 1: Sketch of the variation of the width of a melting ice
block over time. The thin black line represents physical reality
while the thick blue line shows anticipated SDPD results.

frozen SDPD particle has a definite volume which in turn re-
quires a definite amount of time to melt, and hence the transfor-
mation from solid phase to liquid phase appears to be discrete.

Similarly, the temperature profiles shown in figure 2 are discrete
as each SDPD particle has a single temperature i.e. there is no
temperature variation across a single SDPD particle. Continuity
(in terms of temperature) is not enforced between particles, un-
like with finite volume methods, resulting in a non-continuous
temperature profile. These jumps can be reduced as the model
resolution (particle size) becomes finer.

Figure 2: Sketch of the temperature profile of a melting ice
block and the surrounding air over time. The thin black line
represents physical reality while the thick blue line shows an-
ticipated SDPD results.

Another difference between the SDPD results and reality por-
trayed in figure 2, is the variation in the room temperature.
Naturally, the far-field temperature remains constant (this is not
shown explictly in the small length-scale of figure 2); but it is
expected that the temperature of the air nearest the melting ice
cube should be lower than the far-field, before the whole sys-
tem reaches a steady state. The SDPD system, however, does
not explicitly include air and hence its temperature variation is
not modelled. This could be resolved by including particles rep-
resenting the air, governed by similar equations as the ice/water
but with properties corresponding to air. This solution, how-
ever, requires more computational power, and the air transport
properties may vary greatly with temperature.



Figure 3: Sketches of the cross-sectional view of a block of melting ice over time (left), with corresponding anticipated cross-sectional
views of the SDPD model (right).

The closeness of the simulated shape to reality depends largely
on the resolution of the SDPD model. However it is expected
that the SDPD model will likely be more blocky (angular) than
in reality, as sketched in figure 3. As a whole however, this
SDPD model will be able to model the motion of the ice and
water more closely compared to other numerical methods —
specifically the spreading of the ice-water as well as the vertical
motion of the ice as it floats on the melted water. This is shown
in figure 3: due to ice being less dense than water, it is expected
that the ice will float in the melted water. After a sufficient
amount of ice has melted, a thin layer of water will be present
under the remaining ice.

Conclusions

This paper outlines a general formulation and implementation
of an SDPD model for a block of ice melting at room temper-
ature. Due to the phase change from solid ice to liquid wa-
ter, an additional criteria for the change in entropy has to in-
cluded in the typical numerical algorithm. This model can po-
tentially simulate the melting process more closely than grid-
based methods, in that the liquid water and solid ice are free to
move and unconstrained by position. Unfortunately as the air is
not included explicitly, the temperature variation of the air will
not be modelled. The resolution of the model is also very im-
portant in how closely the simulation comes to the continuous
process of melting.
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