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Abstract

We perform a direct numerical simulation investigation of

the incompressible temporally developing turbulent boundary

layer. The flow is the turbulent counterpart to the laminar

Rayleigh problem or Stokes’ first problem, in which a fluid at

rest is set into motion by a wall moving at constant velocity. The

physics contained in the idealised, short-domain, temporally de-

veloping boundary layer may prove useful in the study of wall

turbulence at a manageable computational cost. This is in con-

trast to the considerable cost associated with long domains re-

quired for simulating the spatially developing boundary layer

from trip to fully developed wall turbulence. Comparisons of

the skin-friction coefficient, mean profile, turbulence intensity

and Reynolds shear stress show that the temporally developing

boundary layer and the spatially developing boundary layer are

quite similar once initial conditions can be neglected. An initial

profile that models the effect of a wall-mounted trip wire shows

that the trip Reynolds number of 500 based on the trip-wire di-

ameter is optimal for triggering transition while, at the same

time, only mildly perturbing the flow so it tracks a self-similar

development from the smallest Reθ.

Introduction

Past studies [10, 11, 9] use long computational domains in order

to simulate the spatially developing turbulent boundary layer.

Such simulations are costly. For example, 8192×513×768 ≈
3.2×109 spectral modes are required in the simulations of [10].

In contrast to the spatially developing boundary layer, we pro-

pose here to study the temporally developing boundary layer.

There are many past studies of both spatially developing [e.g.

13] and temporally developing [e.g. 8] free-shear flows. How-

ever, we are unaware of past studies of temporally developing

incompressible turbulent boundary layers, although there are

some studies of temporally developing compressible turbulent

boundary layers [e.g. 5].

An important difference between the spatially developing and

the temporally developing boundary layers can be found by

comparing their respective momentum-integral equations. Con-

sider the Navier–Stokes equations governing incompressible

flow,
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which represent the momentum and continuity equations, re-

spectively. We will take x1, x2 and x3 (or x, y and z) to mean the

streamwise, spanwise and wall-normal directions. We choose

the frame of reference in which the wall (z = 0) is moving at

constant velocity (u = Uw) whilst the the far field (z → ∞) re-

mains at rest (u → 0), well-known as the Rayleigh or Stokes’

first problem (figure 1 b). The appropriate Reynolds decompo-

sition for the temporally developing turbulent boundary layer is

given by ui = u(z, t)δi1 + u′i(x,y,z, t), where (·) indicates aver-

aging in the homogeneous xy-plane. Substituting the decompo-
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Figure 1. Illustration showing the streamwise velocity profile at (a)

t = 0 and (b) t > 0. D is the ‘trip-wire’ diameter. The grey shaded

area represents the magnitude of the white noise that is added to trigger

transition.

sition in (1) and averaging in the homogeneous plane, we obtain
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In contrast, recall that a similar analysis for the spatially devel-

oping boundary layer yields u∂u/∂x+ v ∂u/∂y on the left-hand

side. Integrating (2) from the wall to the quiescent far field and

imposing the appropriate boundary conditions for the viscous

and Reynolds stresses, we obtain
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where δ∗ ≡
∫ ∞

0 (u/Uw) dz, the displacement thickness; X =Uwt,

the temporal counterpart to x in the spatially developing bound-

ary layer; τ0 ≡ −µ∂u/∂z|0 > 0, the wall shear stress; and uτ is

the friction velocity. For comparison, recall that the analogous

expression for the spatially developing boundary layer is given

by dθ/dx = C f /2, where θ is the momentum thickness. The

preceding analysis suggests that δ∗ plays an important role in

the temporally developing boundary layer.

Resistance Laws

We now develop resistance laws that will be used for setting

up the simulations. The analysis assumes Coles’ law of the

wall/wake for the turbulent boundary layer [2]:
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where δ is the 99% boundary layer thickness; w(z/δ) is Coles’

wake function, where w(1) = 2 by convention; Π measures the

wake strength; and κ and A are the log-law constants. From the



ReD Reτ, f Reδ, f LxUw/ν × LyUw/ν × LzUw/ν Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+1 ∆z+t

250 72 2520 90500×45200×43200 512×512×384 8.81 4.41 0.252 8.81

500 788 18720 90500×45200×43200 512×512×384 9.88 4.94 0.283 9.88

1000 769 18000 90500×45200×43200 512×512×384 9.79 4.89 0.280 9.79

1500 792 18720 90500×45200×43200 512×512×384 8.79 4.40 0.252 8.79

2160 839 20160 90500×45200×43200 512×512×384 7.73 3.86 0.221 7.73
.

Table 1. Simulation parameters for the present temporally developing boundary layer simulations. Domain dimensions are given in terms of ν/Uw,

which can be arbitrarily chosen. The grid spacings in wall units are the coarsest observed over the length of the simulation for each trip Reynolds

number, ReD. The wall-normal grid spacings, ∆zt and ∆z1, correspond, respectively, to those at the top and the bottom of the domain. The grid is set up

such that ∆x ≈ ∆zt .

definition of the displacement thickness and (4), we arrive at:
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uτ
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where S ≡ Uw/uτ and C1 is a constant. If we further assume

that the wake function takes the form w(z/δ) = 1− cos(z/δ),
we can calculate C1 = (1+Π)/κ. We seek an expression for

S = S(ReX ). To this end, we first rearrange (4) at z= δ to obtain

Reτ ≡ uτ δ/ν = exp(κ[S−φ(1)]) (6)

or

Reδ ≡Uw δ/ν = Sexp(κ[S−φ(1)]), (7)

where the shorthand, φ(1) = A+ (Π/κ)w(1) = A+ 2Π/κ, is

used. Rewriting the left-hand side of (7) as (δ/δ∗)Reδ∗ , using

(5), then substituting in (3) and invoking the change of vari-

ables that replaces Reδ∗(ReX) with Reδ∗(S(ReX )), we arrive at

the following expression:
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Carrying out the differentiation with respect to S as written and

then integrating by parts gives

ReX =C1eκ[S−φ(1)]
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where the initial condition, S(ReX = 0) = 0, is assumed.

The constants κ, A and C1 are determined from preliminary sim-

ulations and verified with the simulations presented in this pa-

per. The log region of the mean velocity profiles well after tran-

sition gives κ. The time history of Sδ∗/δ in (5) reveals that

the value of C1 stabilises and approaches a constant well after

transition. The definition of C1 (assuming a cosine form for the

wake) then allows us to deduce Π = κC1 −1. This value of Π
found from the definition of C1 is also verified graphically from

the outer-scaled velocity defect. Scaling with inner coordinates

yields the intercept A. We can then calculate φ(1) = A+2Π/κ.

The relevant constants for the present flow are κ≈ 0.40, A≈ 5.0
and C1 ≈ 3.6, from which we have Π ≈ 0.44 and φ(1) ≈ 7.2.

These values agrees well with the compilation of [7].

Simulation setup

We first determine the domain size and the grid spacing in terms

of the reference length scale, ν/Uw. The quantities, ν and Uw,

can be arbitrarily chosen. The domain size, (Lx,Ly,Lz), is de-

termined by the largest boundary layer thickness, δ f , which oc-

curs at the end of the simulation (the subscript f refers to fi-

nal), while the grid spacing, (∆x,∆y,∆z), is determined by the

smallest wall unit, ν/uτ,p, which occurs earlier in the simula-

tion when the skin friction reaches its maximum (the subscript p

refers to peak). In this study, we seek to obtain a boundary layer

at the end of the simulation that is comparable to the Reτ ≈ 590

channel flow of [6]. Thus, setting Reτ, f ≈ 590 in (6), we obtain

S f ≈ 23.2, which can then be substituted in (7) to obtain Reδ, f ≈
13700, say Reδ, f ≈ 14400, that is, δ f ≈ 14400ν/Uw . Follow-

ing [6], we set the wall-parallel domain size to Lx = 2πδ f ≈
90500ν/Uw and Ly = πδ f ≈ 45200ν/Uw , and following [10],

we set the wall-normal domain size to Lz = 3δ f ≈ 43200ν/Uw .

For the wall-parallel grid spacing, we follow [6] and enforce

∆x+ < 9.7 and ∆y+ < 4.8 at all times, which is satisfied by

∆x = 9.7ν/uτ,p and ∆y = 4.8ν/uτ,p . Our preliminary simula-

tions estimated that the maximum attainable peak skin-friction

coefficient corresponds to Sp ≈ 18.7 ⇔C f ,p ≈ 5.7×10−3 , also

corroborated by spatially developing boundary layer simula-

tions [e.g. 9, 10]. We can now specify the number of grid points

in the streamwise direction:
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say Nx ≈ 512 to be conservative. A similar calculation for the

spanwise direction yields Ny ≈ 512. The wall-normal grid spac-

ing is uniform for the first three wall-adjacent cells, but obeys

a half-cosine mapping from the fourth cell onwards, giving a

finer grid at the wall, and a coarser grid away from the wall.

The cosine can be expanded in a Taylor series to obtain
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We enforce ∆z+1 < 0.2 at all times for the first wall-normal grid

spacing, which is satisfied by ∆z1 = 0.2ν/uτ,p . We can now set
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say Nz ≈ 384 to be conservative. Table 1 summarises these grid

parameters.

The boundary conditions are periodic in the x and y directions.

No-slip and impermeable boundary conditions representing a

moving wall, u = v =Uw and w = 0, are imposed at the bottom

boundary (z = 0). The top boundary (z = Lz) is a fixed wall,

where no-slip and impermeable boundary conditions are also



applied, u = v = w = 0. The skin-friction coefficient at the top

wall remains below 2.9× 10−8 at all times for all the simula-

tions presented in this paper.

For initial conditions, we set ui,0 = ui,0(z)+u′i,0(x,y,z), where

u0(z) =
Uw

2
+

Uw

2
tanh

[

D

2θsl
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)

]

, (13)

v0 = w0 = 0 [cf. 3]. Physically, such an initial velocity pro-

file resembles the wake of a trip wire with diameter, D, and

may be compared to physical trips placed at the beginning

of a boundary layer wind tunnel. Hereafter, we will refer to

ReD ≡ DUw/ν as the trip Reynolds number. The step-function-

like shape of the tanh profile also means that the trip diameter

can be identified with the initial boundary layer displacement

thickness, that is, D ≈ δ∗0. To trigger transition, white noise,

|u′i,0| < 0.1Uw, is added to all velocity components near the

wall where Uw −u0 < 10−4Uw (see figure 1 a). The momentum

thickness of the shear layer is set to θsl ≈ 54ν/Uw . The Strouhal

number of the primary Kelvin–Helmholtz instability is given by

Ssl ≡ fslθsl/(Uw/2)≈ 0.033 [e.g. 3], from which the associated

instability length scale is λsl = (Uw/2)/ fsl . Therefore the num-

ber of Kelvin–Helmholtz rollers that form in our boundary layer

can be estimated by Lx/λsl ≈ 0.033Lx/θsl ≈ 55.3. The small

size of these rollers ensure that they will be quickly forgotten as

time progresses, leading to a self-similar development from the

smallest Reθ.

Results

The present code has been validated in [1]. The grid spacings

in wall units are monitored to ensure that the simulation is re-

solved at all times (table 1). The simulations are run a little

longer, reaching Reτ ≈ 800, compared to the planned Reτ ≈
590. This results in slightly smaller domain sizes (Lx/δ ≈ 4.5)

than planned (Lx/δ ≈ 6.0).

Figure 2 shows the development of C f versus Reθ, ReX and Reδ∗

with the five different values for ReD. The turbulent branch

of C f (ReX ) as predicted by (9) and other similar relations for

C f (Reθ) and C f (Reδ∗) are plotted on top of the data. We also

plot the laminar branch of C f derived from the well-known erfc

profile. Figure 2 suggests that, provided the trip is large enough

(ReD & 500) to trigger transition to turbulence, the temporal de-

velopment of the turbulent boundary layer as measured by C f

eventually follows a self-similar evolution. When ReD . 250,

transition is not observed. These figures are similar to the crit-

ical Reδ∗ ≈ 420 for transition (for the Blasius profile) given by

[4] (recall that D ≈ δ∗0). Provided transition is initiated, the flow

that is least perturbed (smallest ReD) leads to a self-similar de-

velopment from the smallest Reθ. This can be observed in figure

2(a,b), where first the ReD ≈ 1000 curve, then the ReD ≈ 1500

curve, and finally the ReD ≈ 2160 curve, track the ReD ≈ 500

curve. Convincing collapse of C f is best observed with Reδ∗ ,

in agreement with the analysis in the Introduction, although a

fair collapse of C f is also observed with Reθ. We do not ob-

serve convincing collapse in figure 2(c) owing to the ill-defined

virtual origin. Recall that the initial condition S(ReX = 0) = 0

is used in the derivation leading to (9). However, we expect to

see collapse if we allow for a simple shift in ReX by ReX ,0. In

any case, the virtual-origin effect becomes unimportant at large

ReX because ReX −ReX ,0 ∼ ReX . Data from the spatially devel-

oping boundary layer of [9] is plotted in figure 2 for for com-

parison. Even though the laminar branches of C f are clearly

different, the turbulent branches of C f are a fair represention

for both spatial and temporal simulations. This is consistent

with the idea that parallel-flow approximation for the spatially

developing boundary layer becomes better with increasing Rex.
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Figure 2. Variation of skin-friction coefficient versus (a) Reδ∗ , (b) Reθ

and (c) ReX : , ReD = 250; , 500; , 1000; ,

1500 and , 2160; , turbulent resistance law; ,

laminar resistance law. Data from [9] is plotted for comparison: ,

K-type transition; o, H-type transition.

The mean and turbulence statistics at Reθ ≈ 1100 and Reθ ≈
2000 for trips ReD = 500 and above are shown in figure 3. Con-

sistent with the story told by the C f curves, it is clear that the

least perturbed boundary layer at ReD ≈ 500 is the flow that as-

sumes a self-similar development from the smallest Reθ. At

Reθ ≈ 1100, the larger two trips (ReD ≥ 1500) have not yet

tracked the other curves; later at the larger Reθ ≈ 2000, the

ReD ≈ 1500 flow appears to have relaxed to a self-similar devel-

opment, although the ReD ≈ 2160 remains perturbed. We also

observe an earlier convergence in the mean profile compared

to the turbulent statistics, an effect clearly seen at Reθ ≈ 2000

for ReD ≈ 2160, consistent with spatially developing boundary



(a) U
+
w −u

+ (b) U
+
w −u

+

Reθ = 1100 Reθ = 2000

100 101 102 100 101 102 103

5

10

15

20

25

(c) u
+
rms (d) u

+
rms

Reθ = 1100 Reθ = 2000

0 200 400 600 800 0 200 400 600 800 1000

0.5

1.0

1.5

2.0

2.5

3.0

(e) u′w′+ (f ) u′w′+

z+

Reθ = 1100 Reθ = 2000

0 200 400 600 800 0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3. Mean and turbulent statistics at two different Reθ: ,

ReD ≈ 500; , ReD ≈ 1000; , ReD ≈ 1500; , ReD ≈

2160. In (c), the data from [12] is for −u′w′+; the sign is reversed here

for the present temporal configuration.

layers [11]. For comparison, data from the spatially developing

boundary layer of [12] is also shown. The agreement between

the two flows suggests that the temporally developing bound-

ary layer is a good model for studying the spatially developing

boundary layer.

Conclusions

We have investigated the incompressible temporally developing

turbulent boundary layer and compared it to its spatially de-

veloping counterpart. The present results suggest that the two

flows are similar in many respects, including turbulent skin-

friction development (figure 2) as well as mean and turbulent

profiles (figure 3). As expected, the effect of initial condi-

tions cannot be neglected. Presently, this effect is investigated

using a tanh profile that models the wake of a wall-mounted

trip. We observe that, for the large trip of ReD ≈ 2160, the

boundary remains perturbed even at Reθ ≈ 2000. For the small

trip of ReD ≈ 250, the boundary layer remains laminar, but for

ReD ≈ 500, the boundary layer transitions and quickly assumes

a self-similar development at the smallest Reθ. The results sug-

gest the memory effect depends on an appropriate Reynolds

number based on the tripping device and that this effect can

never be neglected but can and should be managed in simula-

tions and in laboratory experiments.
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