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Abstract

We investigate the emergence of coherent groups in three-
dimensional fully-nonlinear potential deep water waves whose
initial spectrum is assumed to be of the JONSWAP type with
directional distribution given by (cosθ)n, where n is the integer
varying from 1 to 16. The analysis is based on the results of
long-term wave simulations performed using a numerical solu-
tion of a three-dimensional Laplace equation for the potential
with nonlinear boundary conditions. The main characteristics
of the wave groups such as average group velocity and maxi-
mum group wave height are analysed. The statistics of extreme
wave occurrence in the groups are discussed.

Introduction

The analysis of grouping properties of a wave field in space and
time can be performed using various approaches. Traditionally,
the wave elevation time series are acquired by in-situ sensors
(i.e. anchored buoys, wave lasers) moored at a fixed position
[2]. The alternative to the point measurements are remote sens-
ing techniques capable of acquiring temporal sequences of im-
ages of the ocean surface. The mentioned methods have been
used for the analysis of grouping features in many studies [7].

To detect coherent groups on the ocean surface obtained either
from records or numerical simulations, the two-dimensional up-
per wave envelope (referred to as an envelope below) is con-
structed using various techniques: Riesz transform [5], Hilbert
transform [3] or cubic spline approach described below.

Numerical Model of Three-Dimensional Fully Nonlinear Po-
tential Periodic Waves

We solve numerically the three-dimensional Laplace equation
of the velocity potential φ(x,y,z, t)
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and ∂φ

∂z = 0 at z→−∞, where (x,y,z) are the Cartesian coordi-
nates and t is time. The equations are solved in the infinite do-
main bounded by the wave surface: −∞ < x < ∞, −∞ < y < ∞,

−∞ < z≤ η(x,y, t). The variables φ and η are considered to be
periodic in the x and y directions.

The numerical solution introduced in [1] is obtained in the non-
stationary surface-following non-orthogonal coordinate system

ξ = x , ν = y , ζ = z−η(ξ,ν, t). (4)

The equations in the new coordinates are Fourier-transformed
in the horizontal directions and are discretised using central dif-
ferences in the vertical direction. The obtained system of ordi-
nary differential equations for Fourier coefficients is integrated
in time using the 4th order Runge-Kutta method.

Detection of Wave Groups

Construction of a One-Dimensional Wave Envelope

We define an envelope of a unidirectional wave using a cubic
interpolation connecting local maxima of a wave surface. The
wave group is then identified to be between the two envelope
minima as shown by thick dashed line in figure 1.
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Figure 1: Constructing one-dimensional wave (solid line) upper
envelope using the directional cubic spline (dashed line). The
thick line shows the detected group.

Detection of Groups in a Two-Dimensional Wave Field

In order to define the upper envelope on the two-dimensional
ocean surface we consider its sections forming angle θ with the
main wave propagation direction. The range for the angles is
−90◦ ≤ θ≤ 90◦. Since the surface elevation is computed at dis-
crete grid points only the values nearest to the section plane are
considered without any interpolation. The y distance between
the sections is chosen to be 2π

256 . For the directional sections the
periodicity of the computed fields in the Oy direction is used.

The one-dimensional groups detected in the sections are com-
bined into two-dimensional groups as described below. Two
one-dimensional groups in the neighbouring sections found for
the angle θ are combined if the distance between these one-
dimensional sections d1 is smaller than a half of the peak wave-
length λp and the distance between the middle points of the



groups in the direction of the sections is d2 ≤ 1
4 lmin, where lmin

is the minimum length of the one-dimensional group defined as
lmin = 4λp, where λp is the main wave length. The described
distances are shown in figure 2 a). The two-dimensional wave
group is defined as an embedding rectangle containing the com-
bined one-dimensional groups as shown in figure 2 b).
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Figure 2: a) Group detection parameters, b) the rectangle em-
bedding combined one-dimensional groups.

The characteristics of the detected groups such as their velocity
and maximum height are investigated as the properties of the
subsurface in the embedding rectangles. The example of such a
subsurface is shown in figure 3.
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Figure 3: Subsurface corresponding to the detected group rect-
angle: a) group position on the surface, b) three-dimensional
view of the group surface.

Detection of Group Tracks in a Two-Dimensional Wave Field

We define group track as a sequence of embedding rectangles
introduced for sequential time steps. We consider the consec-
utive snapshots of the two-dimensional wave field taken with
the time intervals 4t ≈ 0.45Tp and the group rectangle corre-
sponding to each of the snapshots in the track sequence. When
analysing a wave field we consider all group rectangles detected
in the θ direction and intersected by a line specifying this di-
rection. We define the width w of the group as the number of
sections in the y direction, with the distance of 2π

256 between
them, that intersect the embedding rectangle. A ”wide” group
is detected if: k > 4, where k is the number of the detected one-
dimensional groups in the rectangle, and w−k < k, so that there
are no large distances between the one-dimensional groups. The
example of a ”wide” group is shown in figure 2 b).

Subsequently, we distinguish two situations. If there are ”wide”
groups along the chosen direction, we first combine them in the
sequence. The individual groups detected for the moments t1
and t2 in time are only combined if t2−t1 < 5Tp, where Tp is the
wave peak period. Then for each sequence we define its width
and position as those of a stripe containing all wide groups be-
tween the dashed lines in figure 4 a)). Additionally, we combine
the groups found in the same snapshots by embedding them into
bigger rectangles if d≤ 0.8lmin, where d is the distance between
the centers of the rectangles. If only narrow groups are present
we choose only those of them that are intersected by the chosen
direction line as shown in figure 4 b).
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Figure 4: Track detection along a line in the chosen direction
with: a) wide groups, b) only narrow groups.

The two groups belonging to different snapshots are combined
in a track if the distance d between centers of the respective
embedding rectangles is smaller than 4

5 λp if the center moves
in the main wave propagation direction or smaller than 1

4 λp, if
the center moves in the opposite direction (due to the alongation
of the embedding rectangle). If more than one group is chosen
from the same snapshot, the group with the minimal d from the
previous snapshot is added to the track.

Note that the same track can be identified along two or more
nearby sections. Thus to avoid double counting we only con-
sider the longest detected track and ignore other shorter tracks
that contain the same groups.

Filtering Group Tracks Found for Different Directions

As can be seen from figure 5, the same group and track can
be identified for different directions θ. To filter out the tracks
detected more than once for the range of θ the following method
is used.
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Figure 5: A wide group detected in both directions θ = 0◦ and
θ = 25◦ in the wave field with the initial directionality index
n = 16.

We find all pairs of groups from the tracks that correspond to the
same time for which the overlap of their embedding rectangles
is larger than 0.5 of the area of at least one of the rectangles in
the pair. Then we combine the tracks that have more than 1 of
such common groups. Subsequently, we filter tracks using the
following maximum steepness criterion.

The track steepness is defined as the maximum steepness εg of
the group subsurfaces that it consists of:

εg =
Hsub

s
2

ksub
p

2π

Lsub , (5)

where Hsub
s is the significant waveheight of the subsurface,

which is four times the standard deviation of the subsurface el-
evation field from the mean value, ksub

p is the peak wavenumber
of the subsurface and Lsub is the length of the subsurface.



Statistics of the average group velocity and the maximum wave
height of the filtered and unfiltered results were compared and
found identical. Thus filtering influences only the number of
tracks analysed.

Group Analysis Results for Two-Dimensional Wave Fields

We analyse wave fields with different directionality indices
(n = 1, 2, 4, 16) in the directions θ =−45◦ . . .45◦ with the step
4θ = 1◦. The calculations were made for the time interval of
135 peak wave periods starting from about the 67th wave period
of the calculations. The groups were detected on the 1/3 part
of the simulated wave field (rectangle 1

3 2πcos(θ)×2π with the
periodicity in the Oy direction to cover the same length of the
field in all directions θ). The summary of the group statistics
analysis is given in table 1.

n N vg std(vg) Hs
Hg
Hs

std(Hg
Hs
)

1 1184

0.13 0.05

0.0062 1.5

0.22 2255 0.0069 1.4
4 2028 0.0072 1.3

16 938 0.0073 1.2

Table 1: Wave groups statistics. The number of groups N, the
group velocities vg, the significant wave heights Hs, the group
wave heights Hg normalised with Hs and their standard devia-
tions.

The Number of Groups

The total number of the detected tracks increases from 1184 for
n = 1 to 2255 for n = 2 (see Tab. 1, column N). With the fur-
ther increase of n the number of the detected tracks decreases
as the wave fields become narrowly directed. The directional
distributions of the detected number of tracks filtered using the
maximum steepness criterion are shown in figure 6 a) by solid
lines for several values of the initial spectrum directionality in-
dex. The corresponding fourth order polynomial least square
regressions are shown by the dashed lines. For the direction-
ality index n = 1 the number of tracks decreases with the in-
crease of |θ|. As n increases the groups become wider and are
found to propagate in the directions with larger angles θ. This
is illustrated in figure 5 where two groups detected for angles
θ = 0◦ and θ = 25◦ are shown at the same location. The wave
field contains wide enough groups so that the same group will
be detected as moving in both inspected directions. It is high-
lighted by fourth order polynomial regressions of the distribu-
tions (dashed lines) normalised by the value at θ = 0◦ in figure
6 b). The average lifetime of the detected groups is 1.6Tp.
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Figure 6: a) Directional distribution of the number of detected
groups in the wave fields with the initial directionality indices
n = 1,2,4,16 (blue, green, cyan and magenta lines, respec-
tively) (solid lines) and their fourth order polynomial regres-
sions (dashed lines). b) The same directional distributions nor-
malised by the values for the main wave propagation direction
θ = 0◦.

Velocity of Groups

The velocity of groups in wave systems has been investigated
in many studies [6, 4] using numerical simulations and exper-
imental radar measurements. Different approaches have been
used for its calculation. For example in [6] the speed of prop-
agation of the surface envelope was investigated using spectral
methods and it was found to be 40% of the phase velocity at the
spectral maximum.

The group velocity in the linear theory of gravity waves is
defined as cg = 1

2

√
g
kp

, where g is the gravity and kp is the

wavenumber of the spectrum peak. In the non-dimensional field
the theoretical group velocity then is cg ≈ 0.09 for kp = 32.
The perceived velocity vg of the detected groups is found as the
velocity of the centers of embedding rectangles. The average
value for the detected groups is vg ≈ 0.13, which is 44% larger
than a theoretical group velocity.

The average velocities of the groups as well as their standard
deviations are found to be similar for fields with all initial di-
rectionality indices n. The values are summarised in table 1.
The behavior of the mean values of velocities of the groups vg
and their standard deviations with the increase of n is shown in
figure 7.
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Figure 7: The average velocities of groups vg and their standard
deviations for various initial directionality indices. The group
velocity in the linear gravity wave theory cg is shown with the
grey dashed line.

In figure 8 the directional distributions of the average veloc-
ities of groups are shown for various directionality indices
n = 1, 2, 4, 16. As seen from the figure, the average velocity of
groups propagating in different directions is virtually indepen-
dent of the direction, except for n = 16 where there is a small
increase of the average velocity for −10◦ < θ < 10◦.

Maximum Wave Height

In order to analyse the occurrence of the extreme waves we cal-
culate the maximum wave heights in the detected groups. We
apply zero-crossing analysis for sections along the wave group
and find the maximum of the individual wave heights Hg. To
compare the results for wave fields with different directionality
indices we normalise Hg relative to the significant wave height
for the wave field (mean value of the time series). The Hs values
are given in table 1.

It can be seen from figure 9 a) and table 1 that the normalised
group heights averaged over the detected groups decrease from
1.5 for n = 1 to 1.2 for n = 16. The wider the initial spectra are
the more likely a high wave is to be observed. Specifically, we
found that the probability of observing a rogue wave is 2.6% for
n = 1 and 1% for n = 2. No extreme waves have been found in
the detected groups for n = 4 and n = 16.

The diagrams in figure 10 show the values of Hg/Hs for groups
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Figure 8: Directional distribution of the average velocity of
groups vg (solid line) and its standard deviation (dashed line)
in the wave fields with the initial directionality index a) n = 1,
b) n = 2, c) n = 4, d) n = 16.
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Figure 9: The average maximum wave height for initial direc-
tionality indices n = 1,2,4,16.

detected in the direction angle interval −45◦ ≤ θ ≤ 45◦. The
groups containing extreme waves are shown by red circles. For
n = 1 and n = 2 the extreme wave cases are more likely to oc-
cur in the main propagation direction. The statistics of the aver-
age Hg/Hs values and their standard deviation are constant for
all directions (see the solid line for the average value and the
dashed line for the standard deviation).

Conclusions

The statistics of the wave groups is analysed for the three-
dimensional wave fields with the initial directionality indices
n = 1,2,4,16 in the directions θ = −45◦ . . .45◦. Wave groups
are detected by considering envelopes of unidirectional wave
constructed using the cubic interpolation connecting local max-
ima of a surface, and combining them into two-dimensional
groups. The total number of the detected wave groups increases
with the growth of n = 1 to n = 2 and then decreases with the
further growth of n that narrows of the wave field spectrum. The
average value of the perceived velocity of the detected groups
vg is found constant for all n in all directions θ. The average
value of the maximum wave heights in the groups normalised
with significant wave height for the wave field is found to be de-
creasing with the increase of n. The high waves or rogue waves
are found more likely to be observed in the fields with the wider
initial spectra and in the main propagation direction.

−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

angle (degrees)

H
g/H

s

a)

−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

angle (degrees)

H
g/H

s

b)

−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

angle (degrees)

H
g/H

s

c)

−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

angle (degrees)

H
g/H

s

d)

Figure 10: Directional distribution of the average maximum
group wave height (solid line) and its standard deviation
(dashed line) for the initial directionality indices a) n = 1, b)
n = 2, c) n = 4, d) n = 16.
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