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Irregular Shock Refraction in Magnetohydrodynamics
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Abstract

Analytical solutions to the magnetohydrodynamic shock refrac-
tion problem are used to explore the limiting interface angles
for which regular refraction will occur, for a particular choice
of problem parameters and varying magnetic field strength. Be-
yond this limit, irregular shock refraction occurs and no ana-
lytical solutions exist at present. Thus, the wave structure re-
sulting from irregular magnetohydrodynamic shock refraction
is determined via ideal simulations, allowing its properties to
be explored.

Introduction

Shock refraction occurs when an incident shock (I) interacts
with an interface, or contact discontinuity (CD), separating flu-
ids of different densities. The initial condition for the canonical
flow where shock refraction occurs is shown in figure 1. This
flow is characterized by the incident shock Mach number M, the
density ratio across the interface η, the angle between the inter-
face and the shock velocity α, and the ratio of specific heats
γ. When all waves resulting from the refraction process meet
at a point and are planar, this is known as regular shock re-
fraction. In hydrodynamics, regular shock refraction results in
single transmitted (T ) and reflected (R) waves, and the shocked
contact discontinuity (SC) is a shear layer, as illustrated in figure
2(a).

Figure 1: Initial condition for simulations of the MHD shock
refraction problem with contour levels indicating density.

Shock refraction can be important any application involving
shock waves and variable density flows. These include inertial
confinement fusion (ICF) [1], astrophysical phenomena [2], su-
personic and hypersonic air-breathing engines, shock-flame in-
teractions and the operation of impulse facilities such as shock
tunnels and expansion tubes. In ICF, the surface of a spheri-
cal capsule is rapidly ablated, driving a converging shock into
deuterium-tritium fuel contained within the capsule [1]. When
this shock interacts with the perturbed material interfaces within
the capsule, vorticity is deposited on them by the shock refrac-
tion process. This is the origin of the Richtmyer-Meshkov in-
stability (RMI) that promotes mixing between the capsule ma-
terial and the fuel, which limits the possibility of achieving en-
ergy break-even or production [3]. In ICF, however, the fluids
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Figure 2: Shock structures resulting from regular refraction of a
M = 2 shock at an α = 36◦, η = 3 density interface for γ = 7/5
and (a) no magnetic field or, (b) an initially horizontal magnetic
field with β = 3/4. Density contours are shown in greyscale.
These are overlaid with vorticity contours clipped at low vortic-
ity magnitude.

involved become rapidly ionized and hence will interact with
magnetic fields. This will also occur in astrophysical settings
and attempted magnetohydrodynamic power generation or inlet
control in scramjets. Such interactions may be modeled in the
framework of ideal magnetohydrodynamics (MHD). In MHD,
the presence of a magnetic field B greatly alters the regular
shock refraction process, as illustrated in figure 2(b): Additional
transmitted and reflected waves are generated that transport vor-
ticity away from the shocked interface [4]. This leaves the in-
terface vorticity free, hence suppressing the RMI [5, 6]. Fur-
thermore, recent experiments demonstrate that immersing ICF
targets in magnetic fields results in increased ion temperature



and neutron yield during capsule implosion [7], which is par-
tially attributed to electron confinement. This provides further
motivation for utilizing magnetic fields in ICF experiments.

Our present understanding of the underlying mechanism by
which the MHD RMI is suppressed in the presence of a mag-
netic relies on regular shock refraction occurring everywhere
along the density interface, facilitating vorticity transport from
its vicinity. In hydrodynamics, there are well established limits
beyond which regular refraction cannot occur, resulting in what
is known as irregular refraction [8]. One shock structure that
can result from irregular refraction, known as single Mach re-
flexion [8], is shown in figure 3: the waves no longer meet at
a single point as a Mach stem forms between R and T . Cru-
cially, a second shear layer emerges from the triple-point where
I, R and the Mach stem intersect. In MHD, however, irregu-
lar shock refraction is a mostly unexplored topic. Conditions
may exist, which we aim to establish, where irregular MHD
shock refraction occurs and the process by which vorticity is
transported from the vicinity of shocked interfaces is uncertain.
To determine whether the suppression mechanism for the MHD
RMI is uniformly valid, we must map the conditions for which
irregular MHD shock refraction occurs, and establish whether
the wave structure resulting from irregular refraction leaves the
vicinity of the interface vorticity free.

Figure 3: Shock structures resulting from regular refraction of a
M = 2 shock at an α = 30◦, η = 3 density interface for γ = 7/5
and no magnetic field. Density contours are shown in greyscale.
These are overlaid with vorticity contours clipped at low vortic-
ity magnitude.

In this paper, we use analytical solutions to the MHD shock
refraction problem to explore the limiting interface angles for
which regular refraction will occur, for a particular choice of
problem parameters (M = 2, η = 3, γ = 7/5, initial B0 aligned
with the shock normal). This will be done for a limited range
of magnetic field strengths, characterized by β= 2p0µ0/B0 ·B0,
where µ0 is the permeability and p0 is the initial thermodynamic
pressure, for which only shocks result from the refraction pro-
cess. Beyond the limit of regular refraction, the result of the
process is unknown and no analytical solutions exist at present.
Thus, the wave structure resulting from irregular MHD shock
refraction is determined via ideal MHD simulations, allowing
its properties to be explored.

Solution Technique for Regular MHD Shock Refraction

Shock refraction problems are generally solved analytically by
determining the wave structure that will satisfy a set of match-
ing conditions across the SC. For the hydrodynamic problem,

only two conditions must be met: the pressure and flow angle
on each side of the SC must be matched. Two degrees of free-
dom, the angles of T and R when regular refraction is possible,
are sufficient to allow these conditions to be met. In MHD on
the other hand, additional constraints are placed on the SC (see
e.g. [9]): the velocity, magnetic field and pressure must all be
continuous across the contact if the magnetic field is not parallel
to it (this special case cannot occur for the parameters consid-
ered here), otherwise the ideal MHD equations are not balanced
and the flow would evolve. These five conditions (in two di-
mensions) are not all independent, as the MHD equations are
subject to the constraint ∇ ·B = 0. Thus if both components of
the velocity, the pressure and the magnetic field magnitude are
matched across the SC by utilizing four degrees of freedom, the
divergence constraint ensures that the direction of the magnetic
field is also matched. To supply these four degrees of freedom,
four waves of unknown angle are required. For simplicity, here
we consider parameters where all of these waves are shocks.
Multiple reflected and transmitted shocks are possible since in
MHD, several types of shock exist.

Shocks are governed by the Rankine-Hugoniot relations. Solv-
ing the MHD Rankine-Hugoniot relations for the normal veloc-
ity ratio across the shock, r = un2/un1, yields four roots. Aside
from the trivial root r = 1, the remaining three roots may each
correspond to entropy increasing shocks, depending on the up-
stream conditions. In MHD, there are three characteristic wave
speeds: the Alfvén velocity, cA = B/√µ0ρ, and the fast and
slow magnetosonic speeds, denoted cF and cSL, respectively.
The component of the Alfvén speed normal to a shock is known
as the intermetiate characteristic speed, cI = Bn/

√
µ0ρ. Thus

there are four regimes for the velocity normal to a shock; 1:
un > cF , 2: cF > un > cI , 3: cI > un > cSL, and 4: cSL > un.
If the state upstream of a shock is in regime 1, three different
regime transitions may occur across the shock: 1→ 2, known as
a fast shock; 1→ 3 and 1→ 4, which are both types of interme-
diate shock. These transitions correspond to the three non-unity
roots of the Rankine-Hugoniot relations, which in this case are
all real and entropy increasing. From other upstream regimes,
2→ 3 and 2→ 4 transitions are also intermediate shocks, while
3→ 4 transitions are known as slow shocks. A further type of
discontinuity propagates at cI and has no effect on the thermo-
dynamic state of the fluid, but does rotate the tangential mag-
netic field and generate a tangential velocity jump, hence it
is known as a rotational discontinuity (RD). Note that while
fast and slow shocks are accepted as being physically realis-
tic, there is debate over the admissibility RDs in strongly planar
flow (where uz = 0 and Bz = 0) and of intermediate shocks in
non-strongly planar flow, as summarized in [4] and [9].

The full solution technique for the MHD regular shock refrac-
tion problem, including conditions where rarefactions are pro-
duced, is documented in [4]. A brief overview of the shock-
only solution technique is presented here to aid interpretation
of the results: We first postulate a wave struture containing
four plane shocks that radiate from the intersection point at un-
known angles. Mathematically this corresponds to selecting
which root of the Rankine-Hugoniot relations will be used to
compute the jumps across each shock. The unknown shock an-
gles are then found iteratively using a secant method. This will
only converge if the postulated wave structure is valid. In or-
der to map out the regimes of validity for each shock structure,
this iterative solution technique was encapsulated in a march-
ing algorithm that sought solutions for varying problem param-
eters utilizing initial guesses for the shock angles extrapolated
from existing solutions. Transitions in shock types were auto-
matically detected and made by monitoring when two roots of
the Rankine-Hugoniot relations approached each other during



marching. Where a converged solution could not be achieved
for any combination of wave types, we suspect regular refrac-
tion is not possible. Note that solutions to the MHD shock re-
fraction problem are in general not unique, and the non-unique
solutions differ in the types of waves that occur [4]. As an ex-
ample, within the parameter ranges considered here, for any so-
lution that includes an intermediate shock, there exists another
solution where the intermediate shock is replaced by an RD fol-
lowed downstream by a slow shock.

Limit of Regular Refraction

The algorithm discussed in the previous section was used to
compute solutions to the MHD shock refraction problem char-
acterized by M = 2, η = 3 and γ = 7/5. Here, we present results
for the solution branch that includes intermediate shocks as the
magnetic field weakens. We map the solution regimes for rela-
tively strong magnetic fields with β< 5/2, and for low interface
angles (α < 4/5), as in hydrodynamics irregular refraction oc-
curs when α becomes too small. Where regular solutions exist
in this parameter space, they are quintuple points, as shown in
figure 2(b). These consist of the hydrodynamic incident shock,
I, transmitted and reflected fast shocks, T F and RF , and trans-
mitted an reflected sub-fast shocks, T S and RS, which may be
intermediate or slow. The computed regimes of validity of these
solutions are presented in figure 4
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Figure 4: Solution regimes for the MHD shock refraction prob-
lem for M = 2, η = 3, γ = 7/5 and varying α and β.

For strong magnetic fields (low β), RS and T S are slow shocks in
the regular solutions. As β increases, first T S then RS transition
to intermediate shocks. These transitions are seen to be delayed
with increasing interface angle α. The proposed low α limit of
regular refraction, αcrit , is revealed to be highly dependent on
the strength of the magnetic field. Strong magnetic fields appear
promote irregular refraction, with the limiting angle for regular
refraction rising steeply as β tends to zero. On the other hand
weaker magnetic fields, with β> 1.15 up to the maximum value
studied here, appear to suppress irregular refraction: the pro-
posed transition to irregular MHD refraction occurs at a lower
interface angle than the hydrodynamic limit of αhyd,crit ≈ 35.5◦

for these conditions. It remains to be determined whether irreg-
ular refraction does indeed occur beyond the limit where we are
able to compute regular solutions. This will be investigated by
conducting numerical simulations for α < αcrit .

Simulation Methodology

The initial condition utilized for shock refraction simulations

is depicted in figure 1. A constant inflow condition is applied
on the left boundary, and an extrapolated outflow condition is
applied on the right. Symmetry conditions are applied on the
top and bottom boundaries. The ideal MHD equations (see
e.g. [9]) are solved numerically using a second-order accurate,
compressible finite-volume code described in detail in [10]. A
dimensionally unsplit upwinding scheme with a Roe-type flux
solver is utilized, and a projection method is used to enforce
the solenoidal property of the magnetic field. An adaptive mesh
refinement scheme of the Berger-Collela type is used under the
Chombo framework. The base mesh is a uniform 2562 Carte-
sian grid and three levels of refinement with refinement ratios
of 2 are utilized. The criterion for refinement is |∇ρ| < ρ/50,
resulting in an effective resolution of 20482 in the vicinity of
the shocks and contact discontinuities.

Irregular MHD Shock Refraction Structure

To investigate the flow structure that arises from MHD shock
refraction below αcrit , we simulate a shock refraction problem
with M = 2, η = 3, γ = 7/5, α = 30◦ and β = 3/4. This value
of β was chosen since it yields only fast and slow shocks when
regular refraction is possible, hence the solutions, and conse-
quently the value of αcrit , are unique. For β = 3/4, we compute
that αcrit ≈ 35.98◦, thus irregular refraction should occur for
α = 30◦ and the α = 36◦ case shown in figure 2(b) is close to
the low α limiting regular solution.
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Figure 5: Numerical solutions featuring irregular refraction of a
M = 2 shock at an α = 30◦, η = 3 density interface for γ = 7/5
and (a) no magnetic field or, (b) an initially horizontal magnetic
field with β = 3/4. Density contours are shown in greyscale.
These are overlaid with vorticity contours clipped at low vortic-
ity magnitude.



Figure 5 compares the zero field (hydrodynamic) and β = 3/4
solutions to the shock refraction initial value problem described
above. Both solutions are seen to be irregular, confirming that
irregular shock refraction does occur in MHD. Note that the
hydrodynamic case has been run for longer to allow the Mach
stem to grow, since its growth rate is substantially lower than
in the MHD case. The irregular shock structure produced in
the β = 3/4 case appears to be the MHD equivalent of the sin-
gle Mach reflexion that occurs with zero magnetic field: the
reflected fast shock RF no longer intersects interface and is con-
nected to the transmitted shocks and RS by the MHD equivalent
of a Mach stem. The changes in flow properties across the MHD
Mach stem are consistent with it being a fast shock: figure 6
shows that it compresses the flow and increases the magnitude
of the tangential magnetic field without changing its sign. The
MHD Mach stem is more oblique to the flow than its hydrody-
namic equivalent, and grows more rapidly with time. Interest-
ingly, there does appear to be a further, weak compression of
the flow above RS in figure 6.

Figure 6: Shock structure produced by irregular refraction of a
M = 2 shock at an α = 30◦, η = 3 density interface for γ = 7/5
and an initially horizontal magnetic field with β= 3/4. Pressure
contours overlaid with magnetic field lines are shown.

Crucially, the irregular MHD shock refraction structure does not
generate a shear layer emanating from the triple-point between
I, RF and the Mach stem. Thus all vorticity generated by the
shock refraction process is transported from the vicinity of the
shocked contact by the MHD shocks, as in the case of regular
refraction. This prevents the shear instability that causes the
roll-up of the interface in the hydrodynamic case, an effect that
is clearly demonstrated by comparing figure 5(a) to 5(b). These
results indicate that the mechanism by which a magnetic field
suppresses the MHD RMI is valid independent of whether reg-
ular or irregular refraction occurs at the density interface.

Conclusions

Making use of an existing analytical solution technique, the
limiting interface angles for which regular MHD shock refrac-
tion occurs where investigated for a range of magnetic field
strengths. It was found that strong magnetic fields promoted the
transition to irregular refraction, while weaker magnetic fields
delayed it compared to the hydrodynamic case. A numerical

simulation confirmed that irregular MHD shock refraction did
indeed occur beyond the computed limiting interface angle. The
resulting shock structure resembled an MHD variant of single
Mach reflexion, with the reflected fast shock connected to the
density interface by a Mach stem, which was classified as a fast
shock. The triple-point between the incident shock, reflected
fast shock and the Mach stem did not produce a shear layer, in-
dicating that all vorticity was transported from the vicinity of
the density interface, preventing its instability.
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