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Abstract 

All the widely used pointwise vortex-identification schemes 

based on the velocity-gradient tensor u  (Q, 2, Δ, and ci) 

implicitly suppressunlike vorticitythe biasing effect of shear 

on their outcome. However, it is shown below that explicit shear-

eliminating vortex-identification methods are in this regard more 

efficient in regions of strong shear. The latter ones are 

represented by the triple-decomposition method (TDM) and by 

the very recently proposed average-corotation scheme; their 

results, not mutually compared earlier, are remarkably similar. 

Introduction 

Although all the widely used pointwise vortex-identification 

schemes [1-7] sharing a basis in the velocity-gradient tensor u  

(Q, 2, Δ, and ci) somehow suppress the biasing effect of shear, 

it is always achieved in an implicit manner. The first approach 

aiming at the explicit determination and elimination of a local 

shearin terms of a portion of u  labelled shear tensoris the 

triple-decomposition method (TDM) [8]. TDM concentrates on 

tensor behaviour and employs the so-called basic reference frame 

(BRF), in which the effect of local shear near a point appears 

most significantly. However, the search for BRF represents an 

optimization problem for each point in the flow domain, which 

makes TDM computationally expensive. The new identification 

scheme introduced recently in [9], the average-corotation 

method, is based on the notion of local corotation of material line 

segments which is applicable to an arbitrary planar cross section 

going through the given point in a 3D flow. The local corotation 

of line segments near a point, as a planar concept, is directly 

related to the residual vorticity in 2D according to TDM. Both 

methods [8, 9] differ in 3D vortex identification: the residual 

vorticity tensor RESΩ  is employed according to TDM, while the 

corotation method employs the average-corotation vector      . 

The vector       provides besides a well-defined kinematic 

interpretation in terms of corotation much faster numerical 

evaluation than TDM. Four different flow situations (a hairpin 

vortex of boundary-layer transition, the reconnection process of 

two Burgers vortices, a flow around an inclined flat plate, and a 

flow around a revolving insect wing) are analyzed in terms of the 

two explicit shear-eliminating schemes and two standard criteria, 

Q and 2. The paper concentrates on the following new aspects: 

(i) how strongly the 3D results of both explicit shear-eliminating 

methods resemble each other, (ii) how the two explicit shear-

eliminating methods outperform Q and 2 in regions of strong 

shear near the plate or insect wing edges. All four methods 

presented below are briefly summarized in Appendix. 

Vortex-Identification Results 

For comparison purposes, the standard 2-criterion provides 

reference results for the following matching procedure described 

in [9]. After choosing a sufficiently low threshold level for the 

2-method, we determine the corresponding threshold values for 

the other three methods under consideration (Q, and the two 

explicit shear-eliminating methods) by minimizing the 

characteristic ratio VN/VO over all possible thresholds. Here VN 

corresponds to the volume where methods do not overlap in 

terms of vortex regions (i.e. one method detects a vortex while 

the other does not) and VO denotes the overlapping volume (i.e. 

the volume representing a vortex according to both methods). 

Hairpin Vortex of Boundary-Layer Transition 

Boundary-layer transition to turbulence is one of very basic flow 

problems associated with distinct vortical structures like hairpin 

vortices. The examined DNS dataset deals with numerical 

simulation of wind-tunnel experiments using controlled 

disturbance excitation with frequency = 62.5 Hz at Re (based on 

the displacement thickness) of 730, according to [10]. Figure 1 

shows a single hairpin vortex formed during the transition 

process to turbulent boundary layer. The adopted matching 

procedure [9] shows high similarity of results for all four 

considered vortex-identification methods. 

Reconnection Process of Two Burgers Vortices 

The subsonic DNS dataset for the reconnection process of two 

Burgers vortices at Ma = 0.3 and Re ( circulation/kinematic 

viscosity) of 10000 is the second test case.  As in the first test 

case, Figure 2 illustrates high similarity of results for all four 

discussed methods, especially in terms of the small-scale vortical 

substructures of connecting ribs of the reconnection process. 

Flow Around an Inclined Flat Plate 

The two examined datasets describe the impulsively started 

incompressible flow around an inclined flat plate (aspect ratio 2) 

at an angle of attack of 30 deg solved numerically for Reynolds 

numbers Re = 300 and Re = 1200. The results shown in Figure 3 

indicate that the two explicit shear-eliminating methods (TDM 

and average-corotation scheme) are ablecontrary to the widely 

used criteria Q and 2to capture more adequately the vortical 

structures in close proximity of the flat plate (just behind the 

plate edges). The two popular methods, Q and 2, fail to correctly 

interpret the regions of high shear in the near wake: the shear 

zones are interpreted in a biased manner as vortical structures. 

These methods are less efficient in distinguishing vortex sheets 

formed at the plate edges from the sought swirling vortex rolls 

representing here a later stage of vortex sheet transformation.  

Flow Around a Revolving Insect Wing 

The vortex structure behind the wing of a fruit fly (Drosophila)  

revolving in a propellerlike motion is examined at the end of the 

first revolution. The flow is dominated by the spiraling tip vortex, 

enclosed by the starting leading-edge and trailing-edge vortices, 

and by a weaker vortex near the root of the wing. The angle of 

attack is fixed at 40 deg and the Reynolds number (based on the 
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Figure 1. Hairpin vortex of boundary-layer transition. 
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Figure 2. Interaction of two Burgers vortices. 
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Figure 3. Vortical structures in the wake of an inclined impulsively started flat plate for Re = 300 (top) and Re = 1200 (bottom). 
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Figure 4. Vortical structures in the wake of a revolving wing of Drosophila for Re = 500.



velocity of the wing tip) is Re = 500. Similarly as in the case of 

the flow around an inclined flat plate, the widely used methods, 

Q and 2, tend in the very near wake of the wing to absorb some 

of the shear-based vorticity generated near the sharp wing edges 

as indicated in Figure 4. In addition, to analyze the results in 

Figure 4 from the viewpoint of shear, Figure 5 focuses on (the 

magnitude of) the vector of average-shear vorticity      , for 

the definition see Appendix (the last part related to average-

corotation method). It should be emphasized that this quantity 

absorbs the effect of both the internal shear and external shear. 

The internal shear which is inherent in a vortex means shearing 

motion of quasi-cylindrical layers inside a vortex, hence 

somewhat imitating vortical structure. The external shear is, at a 

given instant of time, virtually superimposed on the already 

generated vortex motion and represents a potential source of 

change in vortex dynamics and deformation. In the present case, 

both the external shear and vortices are generated behind the 

wing. 

 
Figure 5. Revolving wing of Drosophila: average-shear vorticity |     |. 

For the sake of consistency, the threshold level of |     | 
depicted in Figure 5 is determined using precisely the same 

matching procedure as employed for the vortex-identification 

results (as briefly summarized at the beginning of this section). 

A very close resemblance between |     | and the outcome of 

methods Q and 2, which can be inferred from Figures 4 and 5, 

indicates a shear bias of the two criteria. 

Conclusions 

Focusing on the bias due to shear, two explicit shear-eliminating 

vortex-identification methods, the TDM and the average-

corotation scheme, have been compared with two popular 

schemes, Q and 2, which reduce the shear bias in an implicit 

manner. Four different flow situations (a hairpin vortex of 

boundary-layer transition, the reconnection process of two 

Burgers vortices, a flow around an inclined flat plate, and a flow 

around a revolving insect wing) have been analysed, and it has 

been found that the explicit shear-eliminating methods are more 

efficient in regions of strong shear. In the present study, such 

flow regions are formed in the near wake just behind the sharp 

edges of a plate or wing. Moreover, though the two explicit 

shear-eliminating schemes are clearly different in 3D (see 

Appendix for more information), the obtained results show 

surprisingly high similarity between these two methods 

regardless of the shear rate. The same conclusion holds for the 

outcome of the Q and 2 criteria within the present investigation. 

Appendix 

Q-criterion [1]: Vortices of an incompressible flow are identified 

as connected fluid regions with a positive second invariant of the 

velocity-gradient tensor u , ΩSu  , S is the strain-rate 

tensor, Ω is the vorticity tensor (in tensor notation below, the 

subscript comma denotes differentiation), 
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This is fulfilled in the regions where the vorticity magnitude 

prevails over the strain-rate magnitude. The additional pressure 

condition [1] requiring that the pressure tends to a minimum 

inside the region Q > 0 is arguable [2, 7, 11] and usually omitted. 

λ2-criterion [2]: This criterion is formulated on dynamic 

considerations, namely on the search for a pressure minimum 

across the vortex. The quantity 22
ΩS   is employed as an 

approximation of the pressure Hessian after removing the 

unsteady irrotational straining and viscous effects from the strain-

rate transport equation for incompressible fluids. A vortex region 

is defined as a connected fluid region with two negative 

eigenvalues of 22
ΩS  , that is, if the eigenvalues are ordered, 

321   , by the condition 02  . 

Triple-decomposition method (TDM) [8]: The TDM is expressed 

through the corresponding triple decomposition of a local motion 

near a point. As a result, u  consists, unlike the double 

decomposition ΩSu  , of three parts so that the strain-rate 

tensor S and vorticity tensor Ω are cut down in magnitudes to 

share their portions through the third term  SHu  associated 

with a local shearing motion. Consequently, in terms of the 

residual parts of S and Ω it reads  

          SHRESRES uΩSu   .        (A.2) 

The first term on the right-hand side of (A.2) stands for an 

irrotational straining, the second one represents a rigid-body 

rotation. The third term of the triple decomposition denoted as 

 SHu  and representing a shearing motion is described by a 

purely asymmetric tensor form—labelled shear tensor—fulfilling 

in a suitable reference frame (again, the subscript comma below 

denotes differentiation) 

                      00  ijji uORu ,,    (for all i, j) .        (A.3) 

From the viewpoint of the double decomposition, ΩSu  , 

the extracted term  SHu  itself is responsible for a specific 

portion of vorticity and for a specific portion of strain rate. 

The TDM is closely associated with the so-called “basic 

reference frame” (BRF). In this frame, the decomposition is 

performed in a clearly recognizable manner. However, the TDM 

results generated (i.e. separated) in the BRF are valid for all 

frames of reference rotated with respect to the BRF under an 

orthogonal transformation. The search for BRF presents an 

optimization problem for each point in the flow domain as briefly 

described in the following. 

In the BRF: (i) the most effective shearing motion is described by 

the tensor form (A.3) under the defining condition that (ii) the 

effect of extraction of a shear tensor is maximized within the 

following decomposition scheme applicable to an arbitrary 

reference frame 
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where the residual tensor is defined as 
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The following notation is used in (A.4) and (A.5): u, v, w are 

velocity components, subscripts x, y, z stand for partial 

derivatives. The remaining non-specified pairs of off-diagonal 

elements of the residual tensor in (A.5) are constructed 

analogously as the specified one, each pair—if considered 

separately—being either symmetric or antisymmetric. The effect 

of extraction of the shear tensor is maximized by changing the 

reference frame under an orthogonal transformation so that the 

absolute tensor value of the residual tensor is minimized, or the 

closely related scalar quantity 313123231212 ΩSΩSΩS   is 

maximized, as shown in [8]. This extremal condition guarantees 

that an effective shearing motion is recognized in the BRF as a 

third elementary part of the triple decomposition and can be 

extracted from u  following (A.4) and (A.5). For details and the 

qualitative description of the flow kinematics near a point 

adopted in the TDM, see [8]. 

The residual vorticity tensor RESΩ  representing a rigid-body 

rotation in 3D is assumed to provide an “unbiased shear-free 

measure” of the actual swirling motion of a vortex. Finally, 

according to TDM, non-zero magnitude (i.e. Frobenius norm) of 

RESΩ , 0RES Ω , identifies the examined point as part of a 

vortex. Earlier 3D applications of this method can be found in 

[12, 13]. An analysis of cross sections of vortices in turbulent 

flows using TDM is presented in [14], and another application of 

the planar residual vorticity has been recently described in [15]. 

The average-corotation method [9]: The scheme is based on the 

two following steps: Firstly, the local corotation of material line 

segments at a point is defined on a 2D plane. This planar concept 

is directly related to the residual vorticity in 2D according to the 

above-mentioned TDM as the residual vorticity is a measure of 

local planar corotation of material line segments. Secondly, a 

proper averaging process is applied to all planar cross sections 

going through the given point. The averaging procedure is 

performed as surface integration over a unit sphere, which is 

approximated using numerical quadrature from [16]. 

The integral over a unit sphere can be expressed using the 
spherical coordinates r, φ, ϑ as a double integral 
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where       denotes the average-corotation vector,      is the 

planar residual vorticity determined according to TDM and 

oriented as the plane normal n, and    denotes the examined 

point. A natural choice α = 3 is derived from the requirement that 

average-corotation vector equals to vorticity vector,        , 

for a pure rotational motion Ωu  . 

To evaluate the contribution of shearing motion to vorticity 

separately, the vector of average-shear vorticity       has been 

introduced in [9] and given simply by the resulting formula 

                                                                          (A.7) 

Note that the expression (A.7) is obtainable by the analogous 

averaging procedure as      . 

Finally, the magnitude of the vector       can be employed in 

3-D vortex identification as already shown in [9] where |     | 
has been employed for region-type identification of a vortex in 

the same manner as presented here. 
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