
19th Australasian Fluid Mechanics Conference
Melbourne, Australia
8-11 December 2014

Statistics of Wave Orbital Velocities in Random Directional Sea States

A. Alberello1, A. Chabchoub1, O. Gramstad1, A. Babanin1 and A. Toffoli1

1Centre of Ocean Engineering Science and Technology
Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

Abstract

The inclusion of at least the second order nonlinear contribu-
tion is necessary to achieve an accurate representation of ocean
waves. While this is well known for the surface elevation, the
importance of second order nonlinearity on the velocity poten-
tial, and hence on the wave kinematics and associated wave
loads, is still unclear. To explicitly address the effect of non-
linear contribution on wave velocities Monte-Carlo simulations
with a second order wave model are carried out with different
initial random conditions. Results show that the statistical dis-
tribution of the horizontal components of wave orbital velocity
departs substantially from Normality due to second order con-
tributions for both unidirectional and directional wave fields.

Introduction

Offshore structures have to withstand extreme loads due to the
wave action. Together with a reliable estimation of the proba-
bility of occurrence of freak waves in a stormy sea, the maritime
industry also requires enhanced estimation of the wave loads as-
sociated to extreme waves. Wave forces on offshore structures
are usually estimated as a function of wave-induced velocities
by the Morison equation [5]

F = ρCmV u̇+
1
2

ρCdAu|u|, (1)

where Cm and Cd are the inertia and drag coefficient, A and V
are the frontal area and the body volume, ρ is the water density
and u is the horizontal velocity component of the wave orbital
motion with u̇ its derivative. Thus, correct reconstruction of the
velocity field below water waves assumes a fundamental role
in the evaluation of the intensity of the wave-structure inter-
action. Due to its practical implications the wave kinematics
have been deeply investigated (e.g. [1] and references therein)
to fully characterize the velocity field and hence the wave in-
duced loads on structures.

Mathematically, the wave motion problem can be fully repre-
sented by the boundary value problem described by the lapla-
cian of the velocity potential φ

∇
2
φ = 0, (2)

and its boundary conditions:
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(u2 + v2 +w2)+

∂φ

∂t
=−Q(t), (5)

equation (3) is the no flow condition at the bottom, equations (4)
and (5) are respectively the kinematic and dynamic (nonlinear)
condition at the free surface. Q is the Bernoulli term, g the
gravity constant, t the time, u, v and w the velocity components

along x, y and z respectively, z is positive upwards with zero at
the mean water level.

Explicit analytical solution at the leading order for the water
surface and velocity field are based on a linear superposition
of sinusoidal components, which can only reproduce small am-
plitude wave conditions. Higher order effects are completely
disregarded and hence representations of more extreme waves,
where wave-wave nonlinear interaction play a more substantial
role, are not accurate.

A second order expansion of the water wave problem is rou-
tinely used by offshore and shipping industry to include non-
linear contributions. For the surface elevation, this results in a
interaction between wave components, which leads to a sharp-
ening of wave crests and flattening of wave troughs. For ran-
dom wave fields, this means that wave crest and wave troughs
distributions depart from standard linear distribution such as the
Rayleigh distribution [9, 2, 10, 11, 12], leading to an increase of
probability of extreme wave events. While the effect of the non-
linear contribution on the surface elevation is fully understood,
fewer investigations have been conducted to address the effect
of second on the probability density function associated to the
wave-induced velocities.

Second order solutions for monochromatic waves [4], in this re-
spect, indicates that nonlinear contribution to wave kinematics
vanishes when the water depth is infinite (i.e. waves do not feel
the bottom). This case, however, is only limited to the inter-
action of a wave with itself. Thus it is not yet completely clear
what role the nonlinear interaction between different wave com-
ponents play on wave-induced velocities.

Here we obtain the wave kinematics using an approximate so-
lution of the equation (2) up to the second order [7] that allows
an accurate reconstruction of most of the wave nonlinearities
observed in physical experiments [6, 13, 8]. Monte-Carlo sim-
ulations of unidirectional and directional JONSWAP sea-states
are generated to explicitly analyze the effects of the second or-
der nonlinear effects on the velocity in deep water conditions.

Simulation Method

Numerical Method

The classical second-order theory for water waves [7] pro-
vides explicit expressions for the second order surface elevation
η(x,y, t) and second order velocity potential φ(x,y,z, t). Both
the velocity potential and the water elevation can be written as
a sum of linear and second order contribution

φ = φ
(1)+φ

(2), (6)

η = η
(1)+η

(2), (7)
where the linear terms are respectively

φ
(1)(x,z, t) =

∞

∑
i=1

aig
σi

cosh ki(h+ z)
cosh kih

sin(ψi), (8)

η
(1)(x,y, t) =

∞

∑
i=1

aicos(ψi), (9)



where a is the wave amplitude, g the gravity constant, h the
water depth, σ the angular frequency, k the wavenumber and ψ

is defined as
ψi(x,y, t) = kix−σit + εi, (10)

with k = (kx,ky), x = (x,y) and ε the phase.

The second order contribution can be written as a sum of a posi-
tive (η(2+),φ(2

+)) and a negative contribution (η(2−),φ(2
−)) such

that
φ
(2) = φ

(2−)+φ
(2+), (11)

η
(2) = η

(2−)+η
(2+). (12)

The expressions for the second order contribution to the velocity
potential and the wave elevation are respectively:

φ
(2±) =

1
4

∞

∑
i=1

∞

∑
j=1

aia jg2

σiσ j

cosh k±i j (h+ z)

cosh k±i j h
P±i j sin(ψi±ψ j), (13)

η
(2±) =

1
4

∞

∑
i=1

∞

∑
j=1

aia jN±i j cos(ψi±ψ j). (14)

The kernel functions P±i j and N±i j are defined as:

P±i j =
D±i j

σi±σ j
, (15)

N±i j =

[
D±i j − (kik j∓RiR j)√

RiR j
+(Ri +R j)

]
cos(ψi±ψ j), (16)

where
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√
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√
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√
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)
, (17)

and
Ri = |ki|tanh |ki|h, (18)

k±i j = |ki±k j|. (19)

Initial Conditions

Monte-Carlo simulations are performed for realistic random
unidirectional and directional sea-state conditions. As under-
lying spectral distribution for the linear solution a JONSWAP
spectrum has been used

E(k) =
α

2
1
k4 exp

[
− 5

4

(
kp

k

)2]
γ
−exp(

√
k−kp−1)2/(2s2) (20)

where E is the wave energy, kp is the peak wavenumber, s
(s = 0.09 if k < kp, s = 0.07 elsewhere), γ and α are parameters
that control the shape and peak enhancement of the spectrum.
Simulations are performed for γ = 6 while α is chosen in order
to achieve storm-wave conditions (kpa ≈ 0.16). For the direc-
tional wave field a cosine squared spreading function cos2N(θ)
is adopted, a wide directional spectrum is obtained setting N
equal to 1.

Deep water condition is considered in the simulations (relative
water depth kd = ∞). Monte-Carlo simulations are carried out
by generating 1000 realizations with random phase and random
amplitude approximation. The phase is uniformly distributed,

while the amplitude obeys to a Rayleigh distribution. Computa-
tions first evaluate the linear approximation of an initial surface
and then add second order corrections. A spatial domain dis-
cretized by 512 elements is used. The spatial resolution is cho-
sen to have at least 20 points per dominant wavelength so that
about 24 dominant waves are included in the domain. A reduced
grid size (128× 128) and a lower number of realizations (200)
have been used for the more computationally intense two di-
mensional cases. In this regard, it is worth mentioning that one
realization of a unidirectional wave field requires a cpu time of
0.6s. For the two-dimensional case the cpu time is substantially
larger and overcomes 900s per realization.

The horizontal velocity u(x,z, t), which is the spatial derivative
of the potential φ, can then be easily and efficiently be computed
in the Fourier space

u(x,z, t) = F −1{ikF [φ(x,z, t)]}. (21)

Results

To better understand the effect of second order contribution on
wave kinematics, monochromatic and bi-chromatic waves and
their second order components are presented in figure 1.
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Figure 1. Non-dimensional velocity versus the non-dimensional
space at water depth d = L/6. Left panels monochromatic wave
(ka = 0.16), right panels bi-chromatic wave (k1 = 0.95 ·k, k2 =

1.05 · k and a1 = a2 = a/2). Top panels linear contribution u(1)

(−), lower panels second order terms u(2
−) (−−), u(2

+) (−·−).

In the top-left panel of figure 1 the linear contribution for a
monochromatic wave is shown: u(1) is a sinusoidal signal. Both
the u(2

−) and u(2
+) vanish in deep water as predicted by second

order theory (bottom-left panel in figure 1). Right panels show
the case of a bi-chromatic wave spectrum with the two wave
components closely spaced (∆k = 0.1 · k). In this case the first
order contribution results from the linear superposition of the
two wave components (top-rigth panel in figure 1). As in the
case of monochromatic waves the positive term u(2

+) vanishes



also for bi-chromatic waves, while the negative contribution os-
cillates with a wavelength equal to the length of the wave group
with nodes at the beginning and in the middle of the wave group
u(1).
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Figure 2. Example velocity versus the space at water depth d =

L/6. u(1) (−), u(2
−) (−−), u(2

+) (−·−).

An example of the velocity potential obtained from equations
(8) and (13) for one of the Monte-Carlo realizations of the
JONSWAP spectrum is shown in figure 2. The second order
contribution u(2

+) vanishes in deep water conditions, as it have
been observed for monochromatic and bi-chromatic wave spec-
tra. Also in a random sea-state the velocity is strongly affected
by the negative contribution, u(2

−), analogously to the case of a
bi-chromatic waves.

In figure 3 the linear contribution u(1) computed from the
Monte-Carlo simulation is close to the Gaussian distribution
which is the theoretical distribution for the linear solution. In
deep water condition the positive contribution (u(2

+)) has no ef-
fect on the linear contribution while the negative second order
correction (u(2

−)) sensibly increases the absolute value of the
negative tail while the positive tail remains almost not affected
by the nonlinear contribution. Adding the second order contri-
bution the probability density function becomes left-skewed be-
neath the surface and for a probability of 10−4 the nonlinear ve-
locity is about 25% higher than the linear solution. Analogous
deviation has been observed for both the directional sea-state
(bottom panel figure 3) despite the deviation towards negative
values is less intense in this case. The wave directionality seems
to have little effect on the statistical distribution of the second
order velocities.

Conclusions

Monte-Carlo simulations of random unidirectional and direc-
tional sea-states up to the second order have been performed
with a second order wave model [7] to assess the effect of wave
nonlinearity on the velocity potential and wave-induced veloc-
ity. Initial conditions were imposed by a JONSWAP spectrum
with a cosN(θ) directional function. Only deep water conditions
were investigated.

Second order contribution strongly affects the probability den-
sity function of the wave velocities below the surface. When
nonlinear terms are included there is a strong deviation of the
negative tail of the velocity distribution: for the probability
10−4 the velocity is about 25% higher than the velocity pre-
dicted by the linear theory. This relevant deviation from first
order theory is mainly due the u(2

−) term. Higher negative ve-
locity has also been measured [6], despite they suggest that this
is caused by the return flow in intermediate water depth we be-
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Figure 3. Probability density function of the horizontal velocity
at water depth d = L/6 for unidirectional sea-states (top-panel)
and directional seas (lower panel). Gaussian distribution (−),
u(1) (•), u(1) + u(2

−) (�), u(1) + u(2
+) (∗), u(1) + u(2

−) + u(2
+)

(◦).

lieve that is purely due to the second order contribution. Phys-
ical experiments in a large experimental facility [12] and the
second order approach adopted by both [8] and us leads to the
same results for intermediate and deep water conditions. Wave
directionality seems not to have any effect on the potential and
the velocity in deep water condition, higher order terms may be
affected by wave directionality.

The significant increase of the wave velocity below the surface
means that the wave loads on offshore structure are sensibly
higher than the forces that can be predicted with a purely lin-
ear approach. Inclusion of second order term in the velocities
calculation may affect the design criteria of offshore platform.
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