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Abstract

The dynamics induced by the inclusion of a swirhpoenent in a
vortex ring have yet to be fully described. Theaepment of a
region of negatively signed vorticity at the leagliedge of a
vortex core has been observed for swirling rings bioth
numerical simulations and laboratory experimentg,vhrious
authors.

In this paper, a spectral element method is usedotee the
axisymmetric Navier-Stokes equations for swirlingrtex rings
with a Gaussian initial condition. A Kelvin-Helmhplinstability

is shown to develop within the negative vorticiggion at the
leading edge of the rings. Vortex rings with ratiearying

between 0.2 and 0.5 are considered, with swirl ntages from
0.0 to 0.5. The initial circulation Reynolds nunbéor all cases
is 10 000.

A cut-off shear Reynolds number has been definedyawhich
vortex rings of negative vorticity are formed byetmstability,
and subsequently ejected from the system. Shearslayeaker
than this threshold fail to produce the secondamyst The strain
rate within the original core is shown to fluctuatering the
ejection process, due to the superposition of thainsfields
present in the system. The results of this stutbwapredictions
of Gaussian ring behaviour to be made given a ehitial

conditions.

Introduction

Vortex rings with swirl are common in most transial and
turbulent flows, and are considered to be essetialding
blocks of such flows [18]. The study of vortex rngvith a
swirling velocity component may enhance our knogtddf
bubble-type vortex breakdown [12], the breakdown tigf
vortices on delta wings [14], and give insight itb@ behaviour
of helical vortices [5], which can be found in tHewnwash of
helicopter blades [1]. Naitolet al. [10] found that swirl is
generated in the core of non-swirling vortex rimlye to Kelvin
instabilities. This suggests that all vortex ringan have a
localized induced swirl component at some stagethair
evolution.

A common simplification used in numerical analysésvortex
rings is to assume that the core has a Gaussitnbdi®on of
azimuthal vorticity. However, a Gaussian vortiaiigtribution is
only an exact steady solution of the Navier-Stokgsations for
infinitely thin cores. Hence, a numerical vortemgiwith a finite
sized core will evolve from the initial Gaussianstdbution
towards a new equilibrium state over time, a predesown as
relaxation [15].

The axial velocity strengthV of a swirling vortex ring can be
expressed via

W =——1g, 1)

whereg is the maximum axial velocity through the cofeis
the core circulation, and is the radius of the vortex core. The
size or thickness of a vortex ring can be expressszligh the
ring radii ratio4, where, ifRis the radius of the ring,
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The growth of a region of oppositely signed votticat the

leading edge of a swirling vortex ring has beennshby various

authors [3, 11, 12, 18]. At high swirls (W > 1.@his region

immediately forms into a secondary vortex ring, ebhi
overpowers the original ring [3]. At lower swirlspwever, the
region remains at the leading edge as a shear |aggr Shear
layer instabilities, such as the Kelvin-Helmholtastability

(KHI), have previously been observed in the foromastructures
of vortex rings by Glezer [4], and later Lim [8].Has been found
that the KHI plays an important role in triggeritige transition
from a laminar vortex ring to a turbulent vortergi[8].

In shear layers consisting of a unidirectional flowfluid, the
velocity profile must have an inflexion point to bestable to
small wavy disturbances [13]. This instability maolsm is
inviscid, and will only be damped out by the preserof
viscosity [9]. It is known that the shorter the webangth of the
instability, the higher the amplification of the roesponding
unstable mode. However, in reality, the wavelergjtithe most
amplified instability will be close to the width tfie shear layer
[13]. This paper will elucidate the growth of a KkHbm within
the shear layer of a swirling vortex ring, and imetlthe effect
that the initial conditions have on its development

Methodology

The cross section of the vortex core is initiallgfided by a
Gaussian distribution of azimuthal vorticigy, and a Gaussian
distribution of azimuthal velocity us. They are non-
dimensionalised and expressed in cylindrical polasordinates
(z, r, 6) using the initial circulatior, initial core sizen, initial
ring radius Ry, the initial swirl numberW,, and a radial
coordinate centred on the vortex cergiving

wp = 2e7, )
and uy = Wye™s". (5)

These parameters are shown graphically in Figure 1.



Figure 1. Schematic of the axisymmetric coordirsgtestem for a swirling
ring. Ry, ao, 7o, and v, are flow parameters, while r, 6, and s are

coordinate descriptors. The vorticity and swirlfjes of the vortex core
are both initially Gaussian.

The initial flow field is defined using the threetlmgonal
cylindrical velocity vectors. The, andu, components are found
by solving the streamfunction equation, given by
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The governing equations are solved using a speetehent
method, which discretises a spatial domain intollselaments
over which a high degree polynomial basis is app[@. The
partial differential equations being solved areastcas integral
equations, which can be converted to a set of argidifferential
equations through approximation by Gauss-Legenditmatto
quadrature. The numerical code used here wagirsbnstrated
by Sheardet al. [16], while the 2D axisymmetric solver was
developed by Sheard and Ryan [17]. For these stionfa 11th
order polynomials are used, on a mesh with a goaciag of
0.25g in the region near to the vortex core. The ovesaé of
the domain is 40Qax 200a. A grid resolution study has been
performed, confirming that the results obtainedwaitbin 2% of
the grid independent results.
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The timet is related to the dimensional tirgghrough

bty h
t=-x et (@)
Additionally, two different definitions of Reynoldsumbers are
used to describe the ring properties. The firsindsfthe overall
flow field, using the kinematic viscosity through

Re =—. (8)

The second describes the strength of the shear, laging the
shear layer widtly and velocity differentialdV over the width,
through the relation
54V

Res = v 9)
The circulation, ring radius, and core radius, éach case, are
obtained by following the analysis used in Arclkeal. [2]. The
shear layer is identified by first determining thelocity
maghnitude along a line which both intersects thmtpof peak
negative vorticity, and is tangent to the directiointhe local
vorticity contours. The widthj is defined as the length of a
segment of this line, containing the peak negatiwdicity, over
which the velocity gradient is significantly negeti(magnitude
less than 5% aby att = 0).

Simulations are performed for 96 cases, using l6egaof 4,
(from 0.2 to 0.5) and 6 values 0, (0.0 to 0.5). Each simulation
is initialised withRe = 10 000, and is run for 100 time units.
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Figure 2. Contours (solid lines) af overlaid with a measure of the core
radiusa (dashed line). Contours separated by 0.10. Thedicates the
position of maximum swirl magnitude. The o indicatBe position of the
maximum vorticity magnitude.
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Figure 3. Contours abg for the core of the vortex ring, showing growth
of the KHI. Contours displayed are -0.25, 0.10012.10.

Results and Analysis

Through the initial stages of the evolution, theysh of thewy
field within the vortex core warps as it relaxew&ods the steady
solution of the governing equations. This influentiee shape of
the swirl contours, as shown in Figure 2.

As the shape of the core evolves, the leading edyelops a
concentrated region of negative vorticity neardkis of the ring.
This negative vorticity region at the leading edgeffectively a
unidirectional shear layer containing an inflectigmint of
velocity. Over time, it is wrapped around the |emdedge of the
core (shown as the dotted line contour in Figurelt3js from
within this region that the KHI develops, produciagecondary
vortex ring, with negative vorticity (see Figure 3)

The core radius size fluctuates early in the evmutiue to the
relaxation process. The core relaxation time is tthefined as the
instant at which the core radius reaches a plaaéeu this initial
period of change. The time in which this levelliogt occurs
varies with4,, as shown in Figure 4. It also varies significant!
with Wy for 49> 0.3. The measured ring radiRsat the relaxation
time shows a similar trend, as shown in Figure &. /< 0.3,
the magnitude of the swirl present in the ring litle effect on
the size of the ring radius at the time of corexation.

Next, we consider the strength of the shear lagefined using
the shear Reynolds number from equation (9), feesan which
it has a measurable growth. The shear Reynolds ewurn
monitored over time, and reaches an initial peakagnitude for
all cases, at which time its value is recorded.eAtimate for the
time of initial growth of the secondary ring due ttee KHI
instability is obtained by monitoring theposition of the peak
negative vorticity at the leading edge of the vocere.
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Figure 4. Time required for core relaxation forigas combinations of
Ao andW,. Lines have been shown for clarity purposes. tao#y in
each point is of the order of +1.
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Figure 5. Ring radius size at the core relaxationet for various
combinations offo andW,. Lines have been shown for clarity purposes.
Uncertainty in each point is of the order of 1.

A relationship between the sampled shear Reynaldsber and
the initial ring conditions has been determined bas the form

Re; o log.(WoA3). (10)

The raw data used to develop this expression isisho Figure
6; a clear linear relationship can be seen.

The various combinations of parameters can be agghinto
three groups, based on thBi&,. In cases for whicRes < 200, the
secondary ring has not been observed to form fgrcase. For
shear layers withRes > 250, the secondary ring is always
observed in some form. The absence of the secomifeyyn the
lower Res cases can be attributed to the KHI either being
prematurely damped out, or simply being too wealgdoerate
the secondary ring. Additionally, shear layers #Hrattoo short in
length may not permit growth of the KHI wavelengthigpically,
rings of larger, have longer shear layers.

For any ring below the zero contour line, it isgicted that no
noticeable shear layer will form. Figure 7 shows thlationship
between the core relaxation time, the time to thgai peak in
Res, and the time of initial generation of the secomdeng

(defined as the instant before the position of peakative
vorticity begins to move away from theaxis). Thicker rings
(larger4p) tend to take longer to relax, and reach theirimam

shear Reynolds number faster. Although not predemtee, rings
with larger swirl magnitudes show a similar trend.
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Figure 6. Dependence ate; on A, and Wo. Linear relationship
determined empirically from numerical data. Casess Ithan 200 will
produce a shear layer but no secondary ring. Ggreader than 250 will
produce both a shear layer and the secondary ring.
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Figure 7. Comparison of the time frames required Yortex core
relaxation, initial peak ifRes, and growth of the secondary ring, ¥k =
0.5. Other values of\y show similar trends and so have not been
presented here.

The key observation from Figure 7 is that the sdeon ring
produced by the KHI is not evident until the comis around
the vortex core have relaxed, and the initial pieaRes has been
reached. The KHI ring timing curve in Figure 7 @bsfollows
that of the Res curve for low,, and theRes curve for high4o,
suggesting that the secondary ring cannot grow tiicore has
relaxed fully.

The KHI also influences the internal strain rate ég,;, as
defined in [7]) of the vortex core. As the inst#pilforms the
secondary ring (e.d.= 41 in Figure 3), there is a local maximum
in the magnitude of the internal strain rate ovienet The
secondary ring moves gradually around the origiimag, with a
corresponding decrease in the strain rate, befwestrain rate
returns to a local maximum as the secondary rirmghes its
largest radius (e.g. just befare 51 in Figure 3). This maximum
is a result of the superposition of the opposinguation
velocities of the original and secondary rings.

Finally, the secondary ring is ejected into the gatesulting in
another local minimum. This process repeats foh escondary
ring that forms, taking between 15 and 25 timesutdtcomplete
one cycle. The change in the strain rate over ign@esented in
Figure 8, with the shaded sections each repreggmtirsingle
cycle.
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Figure 8. Top: Development of the internal stra@tere, over time,
normalized by its maximum value. The first regi@pnesents the initial
relaxation, while the subsequent shaded regionsnegative vorticity
ejections due to the KHI. The final region showsg #ettling of the
internal strain rate as viscous diffusion becomesnidant. Bottom:
Relative position of the core of each secondary rith respect to the
core of the primary ring, over time. Angle measuredh positivez-axis.

In the final stage of evolution, the core straitersettles down to
a relatively steady value, once the shear layerihssfficient
strength to generate any further vortices. The wiai of the
ring at this stage is governed only by viscousudifin. The
settling of the strain rate can also be seen inrei§.

Conclusions

A swirling axisymmetric vortex ring with a Gaussianitial
distribution of azimuthal vorticity was analysedngsa spectral
element method, in order to investigate the develg of a
Kelvin-Helmholtz instability from the shear layer the leading
edge. The core of the Gaussian ring was found toenigally
relax to a new equilibrium state of the Navier-®®lequations in
a time period that was dependent on hdghand W, for rings
with 47> 0.3.

A region of negativen, was seen to develop at the leading edge

of the ring, and reached an initial maximum in @meiframe
which was inversely proportional to both andW,. The strength
of this region, represented by the shear Reynoldsber, was
found to be proportional to lgiVp1o®). The KHI was found to
produce an oppositely signed vortex ring from witkthe shear
layer in all cases whelees > 250, and no cases whédre, < 200.

It was also noted that the secondary ring would/ dotm after

both theRe; had reached a local maximum and the core had

relaxed sufficiently towards a steady solution bé tNavier-

Stokes equations. The presence of the KHI was shtawn
influence the strain rate within the vortex coregventing the

core from reaching a diffusive-only state until shkayer was too
weak to support the continued growth of the inditgbi

Additional research needs to be undertaken to miéter the

effect of altering the overall Reynolds number, ahd flow

dynamics for cases with, > 0.5.
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