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Abstract 

The dynamics induced by the inclusion of a swirl component in a 
vortex ring have yet to be fully described. The development of a 
region of negatively signed vorticity at the leading edge of a 
vortex core has been observed for swirling rings in both 
numerical simulations and laboratory experiments, by various 
authors.  

In this paper, a spectral element method is used to solve the 
axisymmetric Navier-Stokes equations for swirling vortex rings 
with a Gaussian initial condition. A Kelvin-Helmholtz instability 
is shown to develop within the negative vorticity region at the 
leading edge of the rings. Vortex rings with ratios varying 
between 0.2 and 0.5 are considered, with swirl magnitudes from 
0.0 to 0.5. The initial circulation Reynolds numbers for all cases 
is 10 000.  

A cut-off shear Reynolds number has been defined, above which 
vortex rings of negative vorticity are formed by the instability, 
and subsequently ejected from the system. Shear layers weaker 
than this threshold fail to produce the secondary rings. The strain 
rate within the original core is shown to fluctuate during the 
ejection process, due to the superposition of the strain fields 
present in the system. The results of this study allow predictions 
of Gaussian ring behaviour to be made given a set of initial 
conditions.  

 

Introduction  

Vortex rings with swirl are common in most transitional and 
turbulent flows, and are considered to be essential building 
blocks of such flows [18]. The study of vortex rings with a 
swirling velocity component may enhance our knowledge of 
bubble-type vortex breakdown [12], the breakdown of tip 
vortices on delta wings [14], and give insight into the behaviour 
of helical vortices [5], which can be found in the downwash of 
helicopter blades [1]. Naitoh et al. [10] found that swirl is 
generated in the core of non-swirling vortex rings due to Kelvin 
instabilities. This suggests that all vortex rings can have a 
localized induced swirl component at some stage in their 
evolution.  

A common simplification used in numerical analyses of vortex 
rings is to assume that the core has a Gaussian distribution of 
azimuthal vorticity. However, a Gaussian vorticity distribution is 
only an exact steady solution of the Navier-Stokes equations for 
infinitely thin cores. Hence, a numerical vortex ring with a finite 
sized core will evolve from the initial Gaussian distribution 
towards a new equilibrium state over time, a process known as 
relaxation [15]. 

 

The axial velocity strength W of a swirling vortex ring can be 
expressed via  

� = ���
� ��			,      (1) 

where ��			 is the maximum axial velocity through the core, Γ is 
the core circulation, and � is the radius of the vortex core. The 
size or thickness of a vortex ring can be expressed through the 
ring radii ratio Λ, where, if R is the radius of the ring,  
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The growth of a region of oppositely signed vorticity at the 
leading edge of a swirling vortex ring has been shown by various 
authors [3, 11, 12, 18]. At high swirls (W > 1.0), this region 
immediately forms into a secondary vortex ring, which 
overpowers the original ring  [3]. At lower swirls, however, the 
region remains at the leading edge as a shear layer [12]. Shear 
layer instabilities, such as the Kelvin-Helmholtz instability 
(KHI), have previously been observed in the formation structures 
of vortex rings by Glezer [4], and later Lim [8]. It has been found 
that the KHI plays an important role in triggering the transition 
from a laminar vortex ring to a turbulent vortex ring [8]. 

In shear layers consisting of a unidirectional flow of fluid, the 
velocity profile must have an inflexion point to be unstable to 
small wavy disturbances [13]. This instability mechanism is 
inviscid, and will only be damped out by the presence of 
viscosity [9]. It is known that the shorter the wavelength of the 
instability, the higher the amplification of the corresponding 
unstable mode. However, in reality, the wavelength of the most 
amplified instability will be close to the width of the shear layer 
[13]. This paper will elucidate the growth of a KHI from within 
the shear layer of a swirling vortex ring, and outline the effect 
that the initial conditions have on its development.  

 

Methodology  

The cross section of the vortex core is initially defined by a 
Gaussian distribution of azimuthal vorticity ωθ, and a Gaussian 
distribution of azimuthal velocity uθ. They are non-
dimensionalised and expressed in cylindrical polar co-ordinates 
(z, r, θ) using the initial circulation Γ0, initial core size a0, initial 
ring radius R0, the initial swirl number W0, and a radial 
coordinate centred on the vortex core s, giving 
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and   �� = ������
.      (5) 

These parameters are shown graphically in Figure 1.  



 

Figure 1. Schematic of the axisymmetric coordinate system for a swirling 
ring. R0, a0, Γ0, and vθ are flow parameters, while z, r, θ, and s are 
coordinate descriptors. The vorticity and swirl profiles of the vortex core 
are both initially Gaussian. 

The initial flow field is defined using the three orthogonal 
cylindrical velocity vectors. The ur and uz components are found 
by solving the streamfunction equation, given by 
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The governing equations are solved using a spectral element 
method, which discretises a spatial domain into small elements 
over which a high degree polynomial basis is applied [6]. The 
partial differential equations being solved are recast as integral 
equations, which can be converted to a set of ordinary differential 
equations through approximation by Gauss-Legendre-Lobatto 
quadrature. The numerical code used here was first demonstrated 
by Sheard et al. [16], while the 2D axisymmetric solver was 
developed by Sheard and Ryan [17]. For these simulations, 11th 
order polynomials are used, on a mesh with a grid spacing of 
0.25a0 in the region near to the vortex core. The overall size of 
the domain is 400a0 × 200a0. A grid resolution study has been 
performed, confirming that the results obtained are within 2% of 
the grid independent results.   

The time t is related to the dimensional time ts through  

� =  !
�� " �#

�#
� .            (7) 

Additionally, two different definitions of Reynolds numbers are 
used to describe the ring properties. The first defines the overall 
flow field, using the kinematic viscosity ν, through 

$� = �
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The second describes the strength of the shear layer, using the 
shear layer width δ and velocity differential ∆V over the width, 
through the relation 

$�� = &'(
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The circulation, ring radius, and core radius, for each case, are 
obtained by following the analysis used in Archer et al. [2]. The 
shear layer is identified by first determining the velocity 
magnitude along a line which both intersects the point of peak 
negative vorticity, and is tangent to the direction of the local 
vorticity contours. The width δ is defined as the length of a 
segment of this line, containing the peak negative vorticity, over 
which the velocity gradient is significantly negative (magnitude 
less than 5% of ωθ at t = 0). 

Simulations are performed for 96 cases, using 16 values of Λ0 
(from 0.2 to 0.5) and 6 values of W0 (0.0 to 0.5). Each simulation 
is initialised with Re = 10 000, and is run for 100 time units. 

 

Figure 2. Contours (solid lines) of �� overlaid with a measure of the core 
radius a (dashed line). Contours separated by 0.10. The x indicates the 
position of maximum swirl magnitude. The o indicates the position of the 
maximum vorticity magnitude. 

 

Figure 3. Contours of �� for the core of the vortex ring, showing growth 
of the KHI. Contours displayed are -0.25, 0.10, 1.10, 2.10.  

 

Results and Analysis 

Through the initial stages of the evolution, the shape of the ωθ 
field within the vortex core warps as it relaxes towards the steady 
solution of the governing equations. This influences the shape of 
the swirl contours, as shown in Figure 2. 

As the shape of the core evolves, the leading edge develops a 
concentrated region of negative vorticity near the axis of the ring. 
This negative vorticity region at the leading edge is effectively a 
unidirectional shear layer containing an inflection point of 
velocity. Over time, it is wrapped around the leading edge of the 
core (shown as the dotted line contour in Figure 3). It is from 
within this region that the KHI develops, producing a secondary 
vortex ring, with negative vorticity (see Figure 3).  

The core radius size fluctuates early in the evolution due to the 
relaxation process. The core relaxation time is thus defined as the 
instant at which the core radius reaches a plateau after this initial 
period of change. The time in which this levelling out occurs 
varies with Λ0, as shown in Figure 4. It also varies significantly 
with W0 for Λ0 > 0.3. The measured ring radius R at the relaxation 
time shows a similar trend, as shown in Figure 5. For Λ0 < 0.3, 
the magnitude of the swirl present in the ring has little effect on 
the size of the ring radius at the time of core relaxation.  

Next, we consider the strength of the shear layer, defined using 
the shear Reynolds number from equation (9), for cases in which 
it has a measurable growth. The shear Reynolds number is 
monitored over time, and reaches an initial peak in magnitude for 
all cases, at which time its value is recorded. An estimate for the 
time of initial growth of the secondary ring due to the KHI 
instability is obtained by monitoring the r-position of the peak 
negative vorticity at the leading edge of the vortex core.  
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Figure 4. Time required for core relaxation for various combinations of 
Λ0 and W0. Lines have been shown for clarity purposes.  Uncertainty in 
each point is of the order of ±1. 

 

Figure 5. Ring radius size at the core relaxation time for various 
combinations of Λ0 and W0. Lines have been shown for clarity purposes.  
Uncertainty in each point is of the order of ±1. 

 

A relationship between the sampled shear Reynolds number and 
the initial ring conditions has been determined, and has the form 

$�� ∝ log./��
�
01.      (10) 

The raw data used to develop this expression is shown in Figure 
6; a clear linear relationship can be seen. 

The various combinations of parameters can be separated into 
three groups, based on their Res. In cases for which Res < 200, the 
secondary ring has not been observed to form for any case. For 
shear layers with Res > 250, the secondary ring is always 
observed in some form. The absence of the secondary ring in the 
lower Res cases can be attributed to the KHI either being 
prematurely damped out, or simply being too weak to generate 
the secondary ring. Additionally, shear layers that are too short in 
length may not permit growth of the KHI wavelengths. Typically, 
rings of larger 
� have longer shear layers.  

For any ring below the zero contour line, it is predicted that no 
noticeable shear layer will form. Figure 7 shows the relationship 
between the core relaxation time, the time to the initial peak in 
Res, and the time of initial generation of the secondary ring 
(defined as the instant before the position of peak negative 
vorticity begins to move away from the z-axis). Thicker rings 
(larger Λ0) tend to take longer to relax, and reach their maximum 
shear Reynolds number faster. Although not presented here, rings 
with larger swirl magnitudes show a similar trend.  

 

Figure 6.  Dependence of $�� on Λ0 and W0. Linear relationship 
determined empirically from numerical data. Cases less than 200 will 
produce a shear layer but no secondary ring. Cases greater than 250 will 
produce both a shear layer and the secondary ring. 

 

Figure 7. Comparison of the time frames required for vortex core 
relaxation, initial peak in Res, and growth of the secondary ring, for W0 = 
0.5. Other values of W0 show similar trends and so have not been 
presented here.  

 

The key observation from Figure 7 is that the secondary ring 
produced by the KHI is not evident until the conditions around 
the vortex core have relaxed, and the initial peak in Res has been 
reached. The KHI ring timing curve in Figure 7 closely follows 
that of the Res curve for low Λ0, and the Res curve for high Λ0, 
suggesting that the secondary ring cannot grow until the core has 
relaxed fully.  

The KHI also influences the internal strain rate (or 234 , as 
defined in [7]) of the vortex core. As the instability forms the 
secondary ring (e.g. t = 41 in Figure 3), there is a local maximum 
in the magnitude of the internal strain rate over time. The 
secondary ring moves gradually around the original ring, with a 
corresponding decrease in the strain rate, before the strain rate 
returns to a local maximum as the secondary ring reaches its 
largest radius (e.g. just before t = 51 in Figure 3). This maximum 
is a result of the superposition of the opposing induction 
velocities of the original and secondary rings.  

Finally, the secondary ring is ejected into the wake, resulting in 
another local minimum. This process repeats for each secondary 
ring that forms, taking between 15 and 25 time units to complete 
one cycle. The change in the strain rate over time is presented in 
Figure 8, with the shaded sections each representing a single 
cycle.  

 



 

Figure 8. Top: Development of the internal strain rate, ε, over time, 
normalized by its maximum value. The first region represents the initial 
relaxation, while the subsequent shaded regions are negative vorticity  
ejections due to the KHI. The final region shows the settling of the 
internal strain rate as viscous diffusion becomes dominant. Bottom: 
Relative position of the core of each secondary ring with respect to the 
core of the primary ring, over time. Angle measured from positive z-axis. 

 

In the final stage of evolution, the core strain rate settles down to 
a relatively steady value, once the shear layer has insufficient 
strength to generate any further vortices. The evolution of the 
ring at this stage is governed only by viscous diffusion. The 
settling of the strain rate can also be seen in Figure 8. 

 

Conclusions 

A swirling axisymmetric vortex ring with a Gaussian initial 
distribution of azimuthal vorticity was analysed using a spectral 
element method, in order to investigate the development of a 
Kelvin-Helmholtz instability from the shear layer at the leading 
edge. The core of the Gaussian ring was found to numerically 
relax to a new equilibrium state of the Navier-Stokes equations in 
a time period that was dependent on both Λ0 and W0 for rings 
with Λ0 > 0.3.  

A region of negative ωθ was seen to develop at the leading edge 
of the ring, and reached an initial maximum in a time frame 
which was inversely proportional to both Λ0 and W0. The strength 
of this region, represented by the shear Reynolds number, was 
found to be proportional to loge(W0Λ0

3). The KHI was found to 
produce an oppositely signed vortex ring from within the shear 
layer in all cases where Res > 250, and no cases where Res < 200.  

It was also noted that the secondary ring would only form after 
both the Res had reached a local maximum and the core had 
relaxed sufficiently towards a steady solution of the Navier-
Stokes equations. The presence of the KHI was shown to 
influence the strain rate within the vortex core, preventing the 
core from reaching a diffusive-only state until shear layer was too 
weak to support the continued growth of the instability. 
Additional research needs to be undertaken to determine the 
effect of altering the overall Reynolds number, and the flow 
dynamics for cases with W0 > 0.5. 
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