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Abstract 

This paper analyses the Navier–Stokes equations in three 

dimensions for an unsteady incompressible viscous fluid in the 

presence of a body force using, as far as the author is aware, a 

novel application of homotopy analysis. An explicit approximate 

solution incorporating arbitrary initial conditions is developed 

and the relationship between this approximation and the 

corresponding exact solution is discussed. 

An analysis of the existence, uniqueness, smoothness and 

convergence of both the explicit approximation solution and the 

corresponding exact solution are also presented. In particular, 

some conclusions regarding the formation of singularities within 

finite time periods for solutions to the Navier–Stokes equations 

(and their non–viscous counterparts) in the three dimensional 

case are noted. 

Finally, the potential utility of the solution strategy employed in 

this paper in the context of direct numerical simulation of fluid 

flows is considered briefly. 

Introduction  

This paper1 outlines an analysis of the Navier–Stokes equations 

for an incompressible, unsteady fluid in the presence of a body 

force with arbitrary initial conditions through an application of 

homotopy analysis.2 Other authors have applied the homotopy 

analysis method to analyse fluid flows (typically in a steady flow 

regime or in the case of unsteady flows in two dimensions) but 

not, as far as the author is aware, in the instance of a three 

dimensional unsteady incompressible flow.  

For example, Ragab, et. al., [4] develop approximate solutions to 

the Navier–Stokes equation in cylindrical coordinates for an 

unsteady one dimensional motion of a viscous fluid with a 

fractional time derivative using homotopy analysis. Alizadeh–

Pahlavan and Borjian–Boroujeni [1] produce an analytical 

solution to the problem of a steady laminar boundary layer flow 

past a flat plate in a viscous fluid. The analysis is based upon the 

transformation of the Navier–Stokes equations in two dimensions 

to a non-linear ODE using a similarity transformation. Homotopy 

analysis is then used to solve this ODE. Xu, et. al., [6] focus on a 

homotopy analysis of laminar, incompressible, and time-

dependent flows in two dimensions of a viscous fluid in a porous 

channel with orthogonally moving walls for the cases where the 

motion of the walls is uniform and non–uniform.  

The remainder of this paper outlines the method including the 

characterisation of the solution for each component of the 

velocity and the pressure within the unsteady fluid flow as a 

Taylor series along with the development of explicit expressions 

                                                           
1 This paper is a revised and condensed version of an earlier set of notes by the 

author (see “Navier–Stokes Equations: Discussion Notes”, ISBN: 978-0-9586147-9-

5, 29 November 2013).  
2 For a discussion of “homotopy analysis” including worked examples, see Liao [3]. 

This paper provides a long listing of applications of homotopy analysis to non-linear 

problems (including fluid flow problems) and sets out a comparison to both 

perturbation and non-perturbative methods. 

for the first two terms of the Taylor series for each velocity 

component and the pressure3. Secondly, this paper examines the 

issues of the existence, uniqueness, smoothness and convergence 

of the Taylor series solutions. In particular, some conclusions are 

presented regarding the formation of singularities within finite 

time periods for solutions to the Navier–Stokes equations (and 

their non–viscous counterparts) in three dimensions. Finally, this 

paper notes briefly the potential utility of the method in the 

context of direct numerical simulation of fluid flows.  

Nomenclature 

ρ fluid density 

ν coefficient of kinematic viscosity 

x x space variable where – ∞ < x < ∞ 

y y space variable where – ∞ < y < ∞ 

z z space variable where – ∞ < z < ∞ 

t time variable where 0 < t < ∞  

u(x,y,z,t;q)  

v(x,y,z,t;q)  

w(x,y,z,t;q) 

velocity vectors for the fluid 

p(x,y,z,t;q) pressure within the fluid 

g(x,y,z,t) body forces acting on the fluid  

δ(t) Dirac delta function 

q homotopy parameter 

i (– 1)½ 

 

Outline of the Mathematical Problem 

Consider the following set of “generalised” PDE’s and associated 

boundary and initial conditions for four unknown functions 

u(x,y,z,t;q), v(x,y,z,t;q), w(x,y,z,t;q) and p(x,y,z,t;q):  

ut + q[uux + vuy + wuz] = – px/ρ + ν[uxx + uyy + uzz] + gx   (1) 

vt + q[uvx + vvy + wvz] = – py/ρ + ν[vxx + vyy + vzz] + gy    (2) 

wt + q[uwx + vwy + wwz] = – pz/ρ + ν[wxx + wyy + wzz] + gz    (3) 

ux(x,y,z,t;q) + vy(x,y,z,t;q) + wz(x,y,z,t;q) = 0    (4) 

u(x,y,z,t;q), v(x,y,z,t;q), w(x,y,z,t;q) and p(x,y,z,t;q) bounded as x, 

y, z and t become large              (5) 

u(x,y,z,0;q) = u0(x,y,z)      (6) 

v(x,y,z,0;q) = v0(x,y,z)      (7) 

w(x,y,z,0;q) = w0(x,y,z)        (8) 

The solutions to the generalised PDE’s subject to the associated 

boundary and initial conditions (i.e., equations (1) – (8)) are 

assumed to be both capable of representation as a Taylor series in 

q about the point q = 0 and convergent for 0 < q < 1: 

                                                           
3 While there are many approximate solutions to the Navier–Stokes equations in 

three dimensions presented in the literature, the application of homotopy analysis 

presented here offers insight into the question of the existence and uniqueness of 

solutions to Navier–Stokes equations in three dimensions for an unsteady 

incompressible viscous fluid. 



u(x,y,z,t;q) = 

n=

∞

∑
0

 [dnu(x,y,z,t;0)/dqn]qn/n! 

v(x,y,z,t;q) = 

n=

∞

∑
0

 [dnv(x,y,z,t;0)/dqn]qn/n! 

w(x,y,z,t;q) = 

n=

∞

∑
0

 [dnv(x,y,z,t;0)/dqn]qn/n! 

p(x,y,z,t;q) = 

n=

∞

∑
0

 [dnp(x,y,z,t;0)/dqn]qn/n! 

When q = 1, the above generalised PDE’s and associated 

boundary and initial conditions (i.e., equations (1) – (8)) 

correspond to the Navier–Stokes equations for an unsteady 

incompressible fluid in the presence of a body force in three 

(unbounded) spatial dimensions and the Taylor series for 

u(x,y,z,t;1), v(x,y,z,t;1), w(x,y,z,t;1) and p(x,y,z,t;1) represent the 

corresponding solutions to these equations. Accordingly, the 

practical task is to develop expressions for the coefficients in 

each of the above Taylor series. This is done by successively 

differentiating equations (1) – (8) with respect to q, setting q 

equal to 0 and then solving the resultant “subsidiary” problems. 

Expressions for the First Term in Each Taylor Series 

The first step in the analysis is to develop explicit expressions for 

the first term in each Taylor series, namely: u(x,y,z,t;0), 

v(x,y,z,t;0), w(x,y,z,t;0) and p(x,y,z,t;0). When q = 0, equations 

(1) – (8) are as follows: 

ut = – px/ρ + ν[uxx + uyy + uzz] + gx             (9) 

vt = – py/ρ + ν[vxx + vyy + vzz] + gy          (10) 

wt = – pz/ρ + ν[wxx + wyy + wzz] + gz    (11) 

ux(x,y,z,t;0) + vy(x,y,z,t;0) + wz(x,y,z,t;0) = 0  (12) 

u(x,y,z,t;0), v(x,y,z,t;0), w(x,y,z,t;0) and p(x,y,z,t;0) bounded as x, 

y, z and t become large                                                         (13) 

u(x,y,z,0;0) = u0(x,y,z)           (14) 

v(x,y,z,0;0) = v0(x,y,z)          (15) 

w(x,y,z,0;0) = w0(x,y,z)     (16) 

Since the coupled terms that appeared in equations (1) – (8) 

above are no longer present in the above PDE’s (i.e., equations 

(9) – (12)), the general solutions4 for each of u(x,y,z,t;0), 

v(x,y,z,t;0) and w(x,y,z,t;0) can be derived separately using 

Fourier transforms on the x, z, and y variables and a Laplace 

transform on the t variable.  If the function u(x,y,z,t;0) in the 

transform space is given as U(ω,η,ε,s), i.e., as follows:5 

U(ω,η,ε,s) = 

 (2π)–3/2 ∫∫∫∫
∞∞

∞−

∞

∞−

∞

∞− 0
u(x,y,z,t;0)e i(ωx + ηy + εz)e–st dtdxdydz

             (17) 

                                                           
4 The reference to the “general” solution reflects the fact that the pressure function, 

p(x,y,z,t;0), is yet to be determined at this stage. 
5 The definition of the Fourier transform and its inverse used in this paper 

corresponds to the convention used in [5]. The definition of the Laplace transform 

and its inverse follows the usual conventions. The convolution theorems used at 

various points in this paper are defined on a basis consistent with the corresponding 

transform to which they relate. 

then V(ω,η,ε,s), W(ω,η,ε,s), P(ω,η,ε,s), G(ω,η,ε,s) and the 

transforms of the associated initial conditions are defined 

correspondingly. For example, the PDE for u(x,y,z,t;0) plus the 

associated initial condition becomes in the transform space: 

sU(ω,η,ε,s) – U0(ω,η,ε) = (iω)P(ω,η,ε,s)/ρ –  

ν[ω2 + η2 + ε2]U(ω,η,ε,s) – (iω)G(ω,η,ε,s)  (18) 

where U(ω,η,ε,s) is the velocity, u(x,y,z,t;0), in the transform 

space; P(ω,η,ε,s) is the (unknown at this stage) pressure function 

in the transform space; G(ω,η,ε,s) is the body force function in 

the transform space; and U0(ω,η,ε) is the initial condition in the 

transform space. Rearranging equation (18) yields: 

U(ω,η,ε,s) = [U0(ω,η,ε) + (iω)P(ω,η,ε,s)/ρ –  

(iω)G(ω,η,ε,s)]/(s + ν[ω2 + η2 + ε2])    (19) 

Similar expressions for V(ω,η,ε,s) and W(ω,η,ε,s) can be derived 

as well: 

V(ω,η,ε,s) = [V0(ω,η,ε) + (iη)P(ω,η,ε,s)/ρ –  

(iη)G(ω,η,ε,s)]/(s + ν[ω2 + η2 + ε2])   (20) 

W(ω,η,ε,s) = [W0(ω,η,ε) + (iε)P(ω,η,ε,s)/ρ –  

(iε)G(ω,η,ε,s)]/(s + ν[ω2 + η2 + ε2])    (21) 

The corresponding continuity equation (i.e., equation (12)), after 

applying the Fourier and Laplace transforms, can be used in 

conjunction with the above expressions for U(ω,η,ε,s),  

V(ω,η,ε,s)and W(ω,η,ε,s) (i.e., equations (19) – (21)) to develop 

an expression for the pressure function in terms of the respective 

transform variables, ω, η, ε, and s: 

P(ω,η,ε,s) = ρ[G(ω,η,ε,s) + [iηV0(ω,η,ε) + iωU0(ω,η,ε) +  

iεW0(ω,η,ε)]/[ω2 + η2 + ε2]]    (22) 

 The function p(x,y,z,t;0) (i.e., the inverse transform of equation 

(22)) is as follows: 

p(x,y,z,t;0) = ρg(x,y,z,t) + 

δ(t)ρ(2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
[iηV0(ω,η,ε) + iωU0(ω,η,ε) +  

iεW0(ω,η,ε)]/[ω2 + η2 + ε2]]e –i[ωx+ηy+ εz]dωdηdε  (23) 

 where δ(t) is the Dirac delta function. Equation (22) can be 

substituted into the expressions for U(ω,η,ε,s), V(ω,η,ε,s) and 

W(ω,η,ε,s) to yield the following: 

U(ω,η,ε,s) = [U0(ω,η,ε) – [ηωV0(ω,η,ε) + ω2U0(ω,η,ε) +  

εωW0(ω,η,ε)]/[ω2 + η2 + ε2]]/(s + ν[ω2 + η2 + ε2])  (24) 

 

V(ω,η,ε,s) = [V0(ω,η,ε) – [η2V0(ω,η,ε) + ωηU0(ω,η,ε) +  

εηW0(ω,η,ε)]/[ω2 + η2 + ε2]]/(s + ν[ω2 + η2 + ε2])  (25) 

 

W(ω,η,ε,s) = [W0(ω,η,ε) – [ηεV0(ω,η,ε) + ωεU0(ω,η,ε) +  

ε2W0(ω,η,ε)]/[ω2 + η2 + ε2]]/(s + ν[ω2 + η2 + ε2])  (26) 

The particular solutions for u(x,y,z,t;0), v(x,y,z,t;0) and 

w(x,y,z,t;0) (i.e., the inverse transforms of equations (24) – (26)) 

are as follows: 

 



u(x,y,z,t;0) =  (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
[U0 – [ηωV0 +  

ω2U0 + εωW0]/[ω2 + η2 + ε2]]e– i(ωx + ηy + εz) – ν[ω² + η² + ε²]tdωdηdε 

(27) 

v(x,y,z,t;0) = (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
[V0 – [η2V0 + 

 ωηU0 + εηW0]/[ω2 + η2 + ε2]]e– i(ωx + ηy + εz) – ν[ω² + η² + ε²]tdωdηdε 

(28) 

w(x,y,z,t;0) = (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
[W0 – [ηεV0 +  

ωεU0 + ε2W0]/[ω2 + η2 + ε2]]e– i(ωx + ηy + εz) – ν[ω² + η² + ε²]tdωdηdε 

(29) 

Expressions for the Second Term in Each Taylor Series  

The development of explicit expressions for the second term in 

each Taylor series, namely: uq(x,y,z,t;0), vq(x,y,z,t;0), wq(x,y,z,t;0) 

and pq(x,y,z,t;0), begins by differentiating equations (1) – (8) 

once with respect to q and setting q equal to zero to yield the 

following: 

utq + [uux + vuy + wuz] = – pxq/ρ + ν[uxxq + uyyq + uzzq]   (30) 

vtq + [uvx + vvy + wvz] = – pyq/ρ + ν[vxxq + vyyq + vzzq]   (31) 

wtq + [uwx + vwy + wwz] = – pzq/ρ + ν[wxxq + wyyq + wzzq]  (32) 

uxq(x,y,z,t;0) + vyq(x,y,z,t;0) + wzq(x,y,z,t;0) = 0   (33) 

uq(x,y,z,t;0), vq(x,y,z,t;0), wq(x,y,z,t;0) and pq(x,y,z,t;0) bounded 

as x, y, z, and t become large        (34) 

uq(x,y,z,0;0) = vq(x,y,z,0;0) = wq(x,y,z,0;0) = 0   (35) 

The terms in each of the above PDE’s in square brackets on the 

left hand side are known (being based upon the results developed 

in the previous section) and play a role similar to the “body 

forces” function in the analysis of the first term in each Taylor 

series above.  If the following notational simplification is made: 

[uux + vuy + wuz] = – a0(x,y,z,t)    (36) 

[uvx + vvy + wvz] = – b0(x,y,z,t)    (37) 

[uwx + vwy + wwz]= – c0(x,y,z,t)    (38) 

the PDE’s for uq(x,y,z,t;0), vq(x,y,z,t;0), and wq(x,y,z,t;0) can be 

restated as follows: 

utq = – pxq/ρ + ν[uxxq + uyyq + uzzq] + a0(x,y,z,t) (39) 

vtq = – pyq/ρ + ν[vxxq + vyyq + vzzq] + b0(x,y,z,t)  (40) 

wtq = – pzq/ρ + ν[wxxq + wyyq + wzzq] + c0(x,y,z,t)  (41) 

As was the case for the coefficients in first term in each Taylor 

series for u(x,y,z,t;1), v(x,y,z,t;1), and w(x,y,z,t;1), the coupled 

terms that appear in the original problem are no longer present in 

the above PDE’s (i.e., equations (39) – (41)). This means that 

solutions for each of uq(x,y,z,t;0), vq(x,y,z,t;0), wq(x,y,z,t;0) and 

pq(x,y,z,t;0) can be derived separately by adopting the same 

approach used on the previous section. The expression for 

pq(x,y,z,t;0) is as follows: 

pq(x,y,z,t;0) =  

ρ(2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
[[iεχ0(ω,η,ε,t) + iηβ0(ω,η,ε,t)+  

iωα0(ω,η,ε,t)]/(η2 + ω2 + ε2)]e–iωxe–iηye–iεz dωdηdε  (42) 

where 

α0(ω,η,ε,t) =  (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
a0(x,y,z,t)eiωxeiηyeiεzdxdydz 

             (43) 

β0(ω,η,ε,t) = (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
 b0(x,y,z,t)eiωxeiηyeiεzdxdydz 

             (44) 

χ0(ω,η,ε,t) = (2π)–3/2 ∫∫∫
∞

∞−

∞

∞−

∞

∞−
 c0(x,y,z,t)eiωxeiηyeiεzdxdydz 

             (45) 

The particular solutions for uq(x,y,z,t;0), vq(x,y,z,t;0) and 

wq(x,y,z,t;0) are as follows: 

uq(x,y,z,t;0) = (2π)–3/2 ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

t

0
 [α0(ω,η,ε,u) –  

[εωχ0(ω,η,ε,u) + ηωβ0(ω,η,ε,u) + ω2α0(ω,η,ε,u)]/(η2 + ω2 + ε2)] 

e– i(ωx+ηy+ εz) – ν[ω² + η² + ε²][t –u] dudωdηdε    (46) 

 

vq(x,y,z,t;0) = (2π)–3/2 ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

t

0
 [β0(ω,η,ε,u) –  

[εηχ0(ω,η,ε,u) + η2β0(ω,η,ε,u) + ωηα0(ω,η,ε,u)]/(η2 + ω2 + ε2)]  

e– i(ωx+ηy+ εz) – ν[ω² + η² + ε²][t –u] dudωdηdε   (47) 

 

wq(x,y,z,t;0) = (2π)–3/2 ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

t

0
 [χ0(ω,η,ε,u) – 

[ε2χ0(ω,η,ε,u) + ηεβ0(ω,η,ε,u) + ωεα0(ω,η,ε,u)]/(η2 + ω2 + ε2)] 

e– i(ωx+ηy+ εz) – ν[ω² + η² + ε²][t –u] dudωdηdε    (48) 

Higher Order Terms, Approximate and Exact Solutions  

The steps outlined in the section immediately above can be 

repeated to allow for the derivation of higher order terms within 

each Taylor series expression for u(x,y,z,t;1), v(x,y,z,t;1), 

w(x,y,z,t;1) and p(x,y,z,t;1).  

If the Taylor series for each of u(x,y,z,t;1), v(x,y,z,t;1), 

w(x,y,z,t;1) and p(x,y,z,t;1) is truncated at a finite number of 

terms, the result will be an approximation of the solution to the 

original boundary problem (as represented by equations (1) – (8) 

where the homotopy parameter, q, is equal to 1).  

This approximation can, in principle, be made arbitrarily more 

accurate (relative to the exact solution) by the addition of extra 

terms in each Taylor series.  

Existence, Uniqueness, Smoothness and Convergence 

The analysis above also casts light on the unresolved question of 

the existence, uniqueness and smoothness of solutions to the 

Navier–Stokes equations (and their non-viscous counterparts) in 

the three dimensional case.  

The individual coefficients in the Taylor series for each of 

u(x,y,z,t;1), v(x,y,z,t;1), w(x,y,z,t;1) and p(x,y,z,t;1) can be viewed 

as either the solution of a diffusion-like problem with a source 

taken over the same range of x, y, z and t variables as the original 

problem or, in the case of the corresponding pressure functions, 

as a reflection of the continuity equation applicable to it (as there 



is no evolution equation governing the pressure function in either 

the original or subsidiary problems).  

The existence and uniqueness theorems that apply to the 

solutions of these subsidiary diffusion-like problems, therefore, 

dictate whether or not each Taylor series for u(x,y,z,t;1), 

v(x,y,z,t;1), w(x,y,z,t;1) and p(x,y,z,t;1) exists and is unique 

provided, of course, that the integral transform methods used to 

solve the various subsidiary problems can be validly applied (i.e., 

that the Fourier and Laplace transforms exist).6  

As far as the question of the smoothness of the solutions is 

concerned, since the solution to each subsidiary problem is a 

solution to a diffusion-like problem which is itself taken to be 

bounded as x, y, z and t become large, the same diffusion-like 

behaviour will be exhibited by the Taylor series expressions for 

each of u(x,y,z,t;1), v(x,y,z,t;1), w(x,y,z,t;1) and p(x,y,z,t;1).7  

Insofar as the convergence of each Taylor series is concerned, 

some general comments can be made. The only term with a non-

zero initial condition is the first term in each series—the higher 

order terms in each Taylor series for u(x,y,z,t;1), v(x,y,z,t;1) and 

w(x,y,z,t;1) each have a zero initial condition plus a source term 

that dissipates over time.  

This combination of a finite initial condition and both the 

dissipative behaviour of, and the  presence of the 1/n! factor in,  

each term in the Taylor series for each of u(x,y,z,t;1), v(x,y,z,t;1) 

and w(x,y,z,t;1) indicates that the contribution of the nth term 

approaches zero in each series as n → ∞. These considerations 

imply that the Taylor series for u(x,y,z,t;1), v(x,y,z,t;1), 

w(x,y,z,t;1) and p(x,y,z,t;1) are suitably well behaved in terms of 

convergence8.  

Furthermore, at no point does the time variable, t, appear in the 

form of 1/(t – k)α, where k is a positive constant and α > 1, in the 

series for u(x,y,z,t;1), v(x,y,z,t;1), w(x,y,z,t;1) and p(x,y,z,t;1) for 

the zero viscosity case9. This observation implies that there is no 

finite time blow up in the zero viscosity case10 for an 

incompressible unsteady flow and, since viscosity has the effect 

of dampening the velocity components of the fluid flow relative 

to the corresponding zero viscosity case, it also implies that no 

finite time blow up occurs in the case where the viscosity is non-

zero for an incompressible unsteady flow either.  

Implications for Direct Numerical Simulation 

As noted above, the individual coefficients in the Taylor series 

for each of u(x,y,z,t;1), v(x,y,z,t;1) and w(x,y,z,t;1) can be viewed 

                                                           
6 It is possible, in principle, that there exist valid solutions for which the 

corresponding Fourier and Laplace Transforms as defined here do not exist. 
7 In addition, the e– ν[ω² + η² + ε²]t term within the solution to each subsidiary problem 

ensures that as the time variable, t, becomes large, each subsidiary solution tends to 

zero for all x, y and z and so too will the expressions for each of u(x,y,z,t;1), 

v(x,y,z,t;1) and w(x,y,z,t;1). 
8 Depending on the particular problem, it is sometimes necessary to introduce a 

scaling parameter, the convergence control parameter, into the generalised set of 

PDE’s and associated boundary and initial conditions to ensure that the Taylor 

series converges. See Liao [3] for further details on this point. 
9 In fact, the time variable, t, appears only as positive whole numbered powers of t 

in the Taylor series for u(x,y,z,t;1), v(x,y,z,t;1) and w(x,y,z,t;1) in the zero viscosity 

case for an unsteady incompressible fluid flow. The requirement that α > 1 is a 

necessary condition for there to be a singularity in the non-viscous flow case. See 

Gibbon [2] for details. 
10 Provided, of course, the body force does not itself contain a singularity that 

emerges within a finite time period.  

as the solution of a diffusion-like problem with a source taken 

over the same range of x, y, z and t variables as the original 

problem (as noted earlier, the coefficients for the Taylor series 

for p(x,y,z,t;1) are “derivative” due to the lack of an evolution 

equation governing the pressure function in either the original or 

subsidiary problems).  

This suggests that direct numerical simulation of the solution to 

the problem considered here can be analysed by decomposing 

equations (1) – (8) into a series of diffusion-like problems with a 

source as has been done here. 

Conclusions 

This paper analyses the Navier–Stokes equations in the three 

dimensional case for an unsteady incompressible viscous fluid in 

the presence of a body force using, as far as the author is aware, a 

novel application of homotopy analysis. In particular, an explicit 

approximate solution to the Navier–Stokes equations is 

developed and the relationship between this approximation and 

the corresponding exact solution is presented.  

The existence, uniqueness, smoothness and convergence of the 

explicit approximate series solutions and for the corresponding 

exact solution are also discussed. In particular, conclusions 

regarding the formation of singularities within finite time periods 

for solutions to the Navier–Stokes equations (and their non–

viscous counterparts) in the three dimensional case are noted.  

In addition, the potential utility of the solution strategy employed 

in this paper in the context of direct numerical simulation of fluid 

flows is considered briefly.  
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