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Abstract 

The parameters of wing geometry such as wing planform shape 

influence the aerodynamic performance of insects, birds and 

micro aerial vehicles (MAV). Past research has shown 

contrasting results about the effect of wing planform shapes on 

the aerodynamic performance of a wing in hover. This study is 

focused on comparing the performance of four wing shapes 

(three wings with different wing area distribution defined by the 

radius of the first moment of wing area (  ̅), and a rectangular 

wing) at Reynolds number (Re) = 12, 400 and 13500 with 

hovering kinematics. An immersed boundary method was 

employed to solve the 3D, viscous, incompressible Navier–
Stokes equations. The average lift coefficient and peak lift 

coefficient were found to increase with both increasing outboard 

wing area, and increasing Re. Wings with less wing area 

distribution outboard were more efficient at all Re, provided they 

generated enough lift to maintain hovering flight. The similarity 

in time history of lift coefficient, average lift coefficient and 

power economy of the rectangular and   ̅ = 0.53 wings at Re = 12 

suggest that   ̅ may be important in determining the performance 

of wings especially at low Re. 

 

Introduction 

The geometric parameters and kinematics of insect wings and 

their effects on the aerodynamic performance in hovering flight 

have attracted great attention in the past. However, previous 

studies on aerodynamic performance of wing planform shapes 

have shown contrasting results. In a computational study at Re = 

200 and 3500, Luo and Sun [5] reported a difference of less than 

5% in the force coefficients for ten different wing shapes (with 

fruit fly wing as a reference) rotating at constant angle of attack.  

In an experimental study, Ozen and Rockwell [6] reported 

qualitatively similar flow structures for rectangle and fruit fly 

wings. While Phillips et al. [7] also reported similarity in flow 

structures for rectangle, ellipse, four ellipse and reverse ellipse 

wings, the findings of the study of Ansari et al. [1] and the 

computational studies of Wilkins [10] and Tejas [2] are different. 

Ansari et al. [1] and Wilkins [10] found that keeping more wing 

area outboard generally increases the force coefficients but it 

could result in reduced efficiency because of increasing power 

requirements. Tejas [2] compared the performance of a 

rectangular wing, ellipse, reverse ellipse, four ellipse and a 

triangular wing at Re = 12, 1134 and 13500 using a Navier–
Stokes (N-S) solver with thrips, honeybee and two angle 

kinematics respectively. It was found that the results at Re = 

1134 and 13500 are similar to those of Ansari et al. [1] and 

Wilkins [10]. However, at Re = 12, the wing with a larger area 

outboard (reverse ellipse), did not produce the highest values of 

force coefficients, but it outperformed others in performance 

efficiency. It is interesting to note that according to Tejas [2], the 

best performance efficiency at Re = 12, 1134 and 13500 is 

achieved by the reverse ellipse, ellipse and rectangular wing 

shape respectively. Hence, the effects of Reynolds numbers on 

the aerodynamic performance of wing shapes (with a variety of 

wing area distribution) need to be investigated further. 

 

The aim of this study is to investigate the aerodynamic   

performance of wing shapes with different wing area 

distributions at three Re values: 12, 400 and 13500, to represent 

flow regimes with qualitatively different leading edge vortex 

structures, and viscous and inertial effects. The Reynolds 

numbers are approximately those of thrips, hoverflies and MAVs. 

The results obtained may be used to interpret the aerodynamic 

performance of wing shapes of insects with various sizes 

operating at different Reynolds numbers.  

 

Wing Geometry and Kinematics 

The wing shapes of insects can be reasonably approximated by 

the beta distribution [3], which can generate shapes with straight 

leading edge, constant wing length and area. This is achieved by 

changing only one parameter,   ̅. Following equations are taken 

from Ellington [3] for the generation of wing shapes: 
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Here   is chord length normalized by mean chord,    is distance 

from the wing base normalized by wing length,   ̅ and   ̅ are 

respectively non-dimensional radius of the first moment and 

second moment of the wing area, and        is the beta function 

defined by two parameters   and  . These parameters are 

calculated by radii of first two moments of wing area. The wing 

shapes presented in figure 1, normalized by mean chord (c) 

include three beta distribution wings:   ̅ = 0.43, 0.53 and 0.63, 

and a rectangular wing. 

 

Figure 1. Wing shapes. Mean chord = 27.7mm, wing length = 82 mm. 



The kinematics of Phillips [7] shown in figure 2 have been used 

in the study. The wing flaps in a horizontal stroke plane with no 

elevation angle. The pitch axis is located at 0.25c from the 

leading edge. Roots of the wing shapes under consideration are 

different. Hence, the pivot is not kept at the root and it is offset 

by a constant value (0.87c) from the wing root for all the wings 

to ensure fair comparison. 

 

Figure 2. Wing kinematics. Flap angle, Φ and pitch angle α. 

Computational Method 

The numerical simulations are carried out with a viscous, 3D, 

incompressible N–S solver [8] based on a second order sharp 

interface immersed boundary method. The wing surface is 

meshed with unstructured triangular elements, and the flow is 

computed on a non-uniform Cartesian grid in the domain as 

presented in figure 3. The flow is assumed to be laminar. No slip 

and no penetration boundary conditions are imposed on the wing, 

and the domain is extended by 20c in all directions. 

 

 

Figure 3. Cartesian grid in background and close up of mesh on a 

Zimmerman wing planform used in the validation study. 

Validation 

Grid independence and time independence studies are conducted 

using a   ̅  = 0.63 wing at Re = 13500. For grid independence, 

simulations are performed on background meshes of 

approximately 5 million (coarse), 10 million (medium) and 20 

million cells (fine) with 4000 time steps per flapping cycle. For 

time independence, the medium grid is run with 2000, 4000 and 

6000 time steps per flapping cycle. Details of the validation 

studies are presented in table 1. 

 

Grid Time steps i × j × k   
̅̅ ̅   

̅̅̅̅  

1. Grid independence 

Coarse 

4000 

179 × 127 × 221 0.950 1.252 

Medium 233 × 155 × 295 0.996 1.317 

Fine 287 × 183 × 369 1.014 1.345 

2. Time independence 

Medium 

2000 

233 × 155 × 295 

1.028 1.365 

4000 0.999 1.313 

6000  0.974 1.286 

Table 1. Results of grid independence and time independence 

The difference of average lift coefficient (   
̅̅ ̅̅ ) and average power 

coefficient (  
̅̅ ̅) between the medium and fine grid is 1.8% and 

2.1% respectively. The difference of   
̅̅ ̅ and   

̅̅ ̅ between the 

medium and fine time steps is 2.6% and 2.1% respectively. Based 

on these results, the medium mesh with 4000 time steps per 

flapping cycle is selected for further computations. The same 

mesh and time step is employed for the cases at Re = 12 and 400. 

This combination gives a maximum CFL of less than 0.5 for all 

the simulations. Validation is also performed against the 

experimental and CFD results of Vandenheede et al. [9], and the 

results are compared in figure 4 (a) and 4 (b).  

 

Figure 4 (a). Time history of lift coefficient.  

 

Figure 4 (b). Time history of thrust coefficient.  

The time histories of force coefficients show a reasonable 

agreement with both the experimental and CFD literature results, 

noting that higher values seen in the experiments are attributed to 

blockage effects caused by proximity of walls of the apparatus to 

the wing as mentioned by Vandenheede et al.[9]. The agreement 

of the CL history is closer than for CT, but the timings of the 

peaks match well in both cases.  

 

Results and Discussions 

Comparison of Force Coefficients and Power Economy 

Figure 5 shows a comparison of CL time histories for the four 

different wing shapes in figure 1. All the wings follow a similar 

trend of force history at a given Re. For a particular wing shape, 

the peak value of CL increases with increasing Re. Similarly, 

wings with larger area outboard (higher   ̅) record a higher peak 

CL. Among all the cases, the highest value of peak CL (2.191) is 

achieved by the   ̅ = 0.63 wing at Re = 13500. During supination 

and pronation (just prior to t/T = 0.5 and 1.0 respectively), the 

value of CL drops to a minimum. At Re = 12, the   ̅ = 0.63 wing 

records the lowest value of CL (-0.211). While the difference of 

CL is obvious at Re = 12, all the wings produce comparatively 

similar values of CL at Re = 400 and Re = 13500 at the stroke 

reversal.  

 

At Re = 12, the increase in CL is flatter during the down and up 

strokes, and the lift curves of the rectangular and   ̅ = 0.53 wings 

are strikingly similar. This may be due to the similarity in the 

values of the   ̅ of both wings. Hence, the value of   ̅ may be 

important in determining performance of a wing. At Re = 400 



and 13500, the CL curves are steeper during the down and up 

strokes, resulting in higher values of peak CL. 

 

Figure 5. Time history of CL of all wings at (a) Re = 12 (b) Re = 400 and 
(c) Re = 13500. 

The time histories of the rectangular and   ̅ = 0.53 wings are very 

close at all Reynolds numbers, but particularly so at Re = 12. The 

comparison of   
̅̅ ̅ and   

̅̅ ̅  of all wings averaged over the 4th, 5th, 

and 6th flapping cycles is given in table 2. 

Re Planform    
̅̅ ̅   

̅̅̅̅    
̅̅ ̅ /   

̅̅̅̅  

12 

  ̅  = 0.43 0.395 1.071 0.369 

  ̅  = 0.53 0.464 1.310 0.354 

  ̅  = 0.63 0.539 1.632 0.330 

Rectangle 0.459 1.290 0.356 

400 

  ̅  = 0.43 0.664 0.748 0.888 

  ̅  = 0.53 0.801 0.991 0.808 

  ̅  = 0.63 0.913 1.274 0.717 

Rectangle 0.810 0.957 0.846 

13500 

  ̅  = 0.43 0.719 0.761 0.945 

  ̅  = 0.53 0.871 1.020 0.854 

  ̅  = 0.63 0.996 1.317 0.756 

Rectangle 0.874 0.983 0.889 

Table 2. Comparison of lift force, power and power economy of all the 

wings at Re = 12, 400 and 13500. 

 

Figure 6. Variation of   
̅̅ ̅ and power economy (P.E.) of different wings at 

Re = 12, 400 and 13500.   ̅ = 0.50 represents the rectangular wing. 

Power economy (P.E.) defined in equation 7 has been used to 

measure the efficiency of lift production of the wings. 

          
̅̅̅̅  /   

̅̅ ̅                          (7) 

Here   
̅̅ ̅ is the mean coefficient of lift and   

̅̅ ̅ is the mean 

coefficient of aerodynamic power. At Re = 12, the P.E. of the 

rectangle and   ̅ = 0.53 wings are the same, which is consistent 

with the time histories presented in figure 5.  At all Re values 

considered,   
̅̅ ̅ and   

̅̅ ̅ increase with increasing outboard wing 

area, but the P.E. decreases as shown in figure 6. This result is 

consistent with the findings of Ansari et al. [1] and the 

computational study of Wilkins [10] at Re =500. While Ansari et 

al. [1] did not take into account the wing tip effects, some aspects 

of viscosity and the effects of spanwise flow, this study confirms 

that their results still hold valid after considering those factors in 

the simulations. Thus, wings with lower area outboard are more 

efficient, irrespective of the Re. However, any given wing must 

still produce enough lift to keep the insect aloft.  In order to 

elaborate this point, figure 7 shows the variation of P.E. with 

  
̅̅ ̅ as a function of Re, for all the wings. For example, if a    

̅̅̅̅ of 

0.8 is required to balance the weight in hovering motion at Re = 

400, then a rectangular wing would serve the purpose. Although 

it is more efficient in general, the   ̅ = 0.43 wing is unable to 

produce enough lift for this condition. Hence Re must be 

considered in conjunction with the wing area distribution to 

achieve hovering flight. Reasons for this are explored further 

below. 

 

Figure 7. P.E. Vs   
̅̅ ̅ for different wings and Re. 

 

Figure 8. Comparison of iso-Q surfaces at t/T = 0.1. Re = 12 (left), 400 

(centre) and 13500 (right).   ̅  = 0.43 wing (a-c),   ̅  = 0.53 wing (d-f),   ̅  
= 0.63 wing (g-j) and rectangular wing (k-m). 

 



Comparison of Flow Features 

The vortex structures on the wings are visualized in the 6th 

flapping cycle, (at t/T = 0.1 and 0.3) using Q-criterion iso-

surfaces. Non dimensional Q values of 0.5, 5 and 20 are used for 

Re = 12, 400 and 13500 respectively.  

In figure 8, at t/T = 0.1, the wing is about to complete pronation 

and start the downstroke. At Re = 12, there is a stable, coherent 

and attached root vortex (RV), leading edge vortex (LEV), 

trailing edge vortex (TEV) and tip vortex (TV) system, forming a 

horseshoe shaped structure wrapped around the wings. At Re = 

400, a conical LEV structure is developing, as the wing moves 

through the wake of the previous stroke. At Re = 13500, small-

scale vortical structures are observed on the tip and trailing edge 

and the wake from the previous stroke is relatively intense. The 

LEV is only just developing for each of the wings, with the RV 

only visible on the   ̅ = 0.63 wing.  

In figure 9, at t/T = 0.3, the wing is in downstroke phase of 

flapping. At Re = 12, all the wings continue to exhibit a smooth 

RV, LEV, TEV and TV system, which has grown in size, and 

there are no signs of vortex shedding. At Re = 400, a stable LEV 

is anchored on the wing, and it joins the TV in the wake forming 

a tube like structure. While the RV detaches quickly from the r1 = 

0.53 and r1 = 0.63 wings, it extends downstream in the wake and 

joins the LEV-TV trail for the   ̅ = 0.43 and rectangular wings. 

The LEV on the   ̅ = 0.43 wing shows early signs of vortex 

breakdown, however,  on the other wings it remains attached and 

sheds close to the wing tip. At Re =13500, a RV is observed on 

all the wings for the first time. One LEV originates from the wing 

root, and it splits into a dual LEV system. The formation of dual 

LEVs at a high Re is consistent with findings in the literature [4]. 

The front LEV extends along the span and joins the trailing edge, 

whereas the rear LEV breaks down at about mid span. LEV, TEV 

and TV shed into a wake, forming a strong helical structure. 

Although the RV detaches quickly from the   ̅  = 0.53 and   ̅  = 

0.63 wings, it joins the LEV, TEV and TV trail in the case of the 

  ̅  = 0.43 and rectangular wings.      

 

Figure 9. Comparison of iso-Q surfaces at t/T = 0.3. Re = 12 (left), 400 

(centre) and 13500 (right).   ̅ = 0.43 wing (a-c),   ̅ = 0.53 wing (d-f),   ̅ = 
0.63 wing (g-j) and rectangular wing (k-m). 

Conclusion 

In this paper, comparison of lift (average, peak and time history), 

power economy and vortex structures for four equal area wings at 

three Reynolds numbers has been presented. It was found that 

average and peak lift coefficients increased with increasing 

distribution of the wing area outboard, as was expected given the 

greater wing velocity towards the tip. This also resulted in greater 

power requirements leading to reduction of power economy. The 

time history of CL and P.E. of the rectangular wing was similar to 

the   ̅= 0.53 wing especially at Re = 12. Both the wings have 

similar values of   ̅. Hence,   ̅ may be important in determining 

the performance of a wing especially at low Re. However, further 

work has to be done to authenticate this result. For a given wing 

shape, as Re was increased, the vortical structures transformed 

from a horse-shoe shaped vortex system (Re = 12) to a conical 

LEV with tube like TV-TEV system (Re = 400), and then to a 

dual LEV system with helical TV-TEV structures (Re = 13500). 

Despite the differences in the evolution of flow features at 

different Re, the performance trend of the various wing shapes 

was the same that is for a given wing area, wing with less of that 

area outboard was more efficient.  

At a given Re, there was similarity in global flow structure on all 

the wings [6, 7] which was also confirmed by the resemblance in 

the pattern of the lift time histories. However, this doesn’t qualify 

as the criterion to gauge the performance of wings, rather it is the 

placement of wing area in relation to those structures that is 

determinant of lift and power economy.  
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