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Abstract

A new comparison of the three-dimensional two-point corre-
lations for the streamwise (u), wall-normal (v), and spanwise
(w) velocity fluctuations, is presented for turbulent boundary
layers and channels reaching δ+ ≈ 2000. Streamwise, span-
wise and wall-normal dimensions and inclinations angles are
given, with special emphasis on the behavior of the logarith-
mic and outer layers. The correlations are fairly different for
different variables. In general, Cuu is inclined at shallow for-
ward angles to the wall, which vary with the wall distance.
Cww is inclined at a steeper angle, but still forward, and Cvv
is essentially vertical. The streamwise velocity component is
found to be coherent over longer distances in channels than in
boundary layers, especially in the direction of the flow. For
weakly correlated structures, the maximum streamwise length
at the outer region is O(7δ) for boundary layers and O(18δ)
for channels. The corresponding lengths for the spanwise and
wall-normal velocities are shorter, O(δ-2δ). Further insight
into the flow is provided by correlations conditioned on the in-
tensity of the perturbations at the reference point, or on their
sign. The statistics of the new simulation are available in
http://torroja.dmt.upm.es/turbdata/blayers/

Introduction and Methods

The purpose of this paper is to present fully three-dimensional
two-point statistics of a new zero-pressure-gradient turbu-
lent boundary layer [8] up to Reθ ≈ 6600 (δ+ ≈ 2000),
which is compared with turbulent channels at similar maxi-
mum Reynolds number, δ+ = 2003 [2], where δ is either the
boundary-layer thickness or the channel half width. Those two
types of flows are used as archetypes of external and internal
wall-bounded flows respectively. In our study, spatial velocity
correlations are computed within fairly long domains, O(20δ),
to allow the fluid structures to fully decorrelate and to observe
the largest scales present in the flow. Table 1 summarizes the
main parameters of the direct numerical simulations used in this
paper.

Case δ+ (Lx,Ly,Lz)/δ Nx,Ny,Nz
CH2000 2003 8π,2,3π 6144,633,4608
BL6600 980–2025 21π,3.5,3.2π 15361,535,4096

Table 1. Parameters of the numerical simulations. Lx, Ly and Lz
are the box dimensions along the three axes, and Nx, Ny and Nz
are the collocation grid sizes.

The paper discusses the average three-dimensional organization
and structure of the flow in terms of spatial two-point correla-
tion functions, that are computed in Fourier space for all the
homogeneous directions. For instance the covariance in bound-
ary layers is defined as

R̂ψφ(x,x′,y,y′,kz) = 〈ψ̂(x,y,kz)φ̂
∗(x′,y′,kz)〉, (1)

where ψ and φ are generic variables of zero mean, ψ̂ stands
for Fourier transformation with respect to z, and 〈·〉 is the ex-
pected value. The asterisk is complex conjugation, and kz is
the spanwise wave number. The covariance in physical space,

Rψφ(x,x′,y,y′,∆z), is obtained as the inverse Fourier transform
of R̂, where ∆z = z− z′ is the distance between the two points
in the spanwise direction. The autocorrelation coefficient,

Cψφ(r,r′) = Rψφ(r,r′)/σψ(r)σφ(r′), (2)

is obtained by normalizing the covariance with the product of
the standard deviations at the two points involved in the mea-
surements, denoted by r′ for the reference point and by r for the
moving one.

Since boundary layers are not homogeneous in the x-direction,
correlations are only compiled at two reference sections, cho-
sen so that δ(x′)+=1530 and 1990. In each case, the streamwise
range is x = x′±10δ, except for the most downstream location,
where the computational box ends at xend ≈ x′+2δ. The corre-
lations in the channel is computed over the whole computational
box, x = x′±4πδ. In all cases, the covariances are accumulated
over all the statistically independent flow field realizations of
our numerical databases, O(200), and compiled for more than
twenty different heights distributed over the inner, logarithmic,
and outer regions of the flow.

Velocity Correlation Results

Figure 1 is a three-dimensional representation of Cuu for the
boundary layer, centered in the outer region, y′/δ = 0.6, and
δ(x′)+ = 1530. For the isosurface Cuu = 0.09, there is a posi-
tively correlated region extending about Lx≈ 4δ between its far-
thermost points in the streamwise direction, from 3δ upstream
to δ downstream of the reference point. In the wall-normal and
spanwise directions, its size is Ly ≈ δ and Lz ≈ 0.5δ, respec-
tively. Two negatively correlated regions flank the positive one,
separated from each other by ∆z ≈ δ and with sizes that are
smaller than the positive one. Both the positive and negative
regions are slightly inclined with respect to the wall.

Figure 1. 3D representation of Cuu for BL6600 at δ+=1530 and
y′/δ=0.6. Several isosurfaces are shown at Cuu=−0.09 (white),
+0.09 (turquoise), +0.4 (yellow) and +0.8 (blue). In the planes
going through the correlation origin, the contour lines of pos-
itive and negative correlation values are colored red and white
respectively, ranging from 0.09 to 1.0 and from -0.04 to -0.1.
The contour lines of the zy-plane at ∆x/δ=−2.2 range from 0.03
to 0.1, and from -0.02 to -0.06.

The functional form of the correlations in those sections is not



completely arbitrary, because it follows from incompressibil-
ity that the covariance must satisfy ∑ j ∂ jR ji(r,r′) = 0, where
∂ j is the derivative with respect to r j, and j refers to the co-
ordinate direction or to the corresponding velocity component.
Integrating over the whole domain, and noting that the correla-
tion vanishes at large |r− r′|, or whenever r is at a no-slip wall,
it follows that

x
Ruu dzdy =

x
Rvv dxdz =

x
Rww dxdy = 0. (3)

The integrations in equation (3) are over a full plane normal to
each velocity component: from (−∞,∞) in the case of x and z;
from one wall to the other in the case of y in channels; and from
the wall to the potential stream in the case of y in the boundary
layer. Therefore, the correlation flux over planes orthogonal to
a given velocity component has to vanish, implying the coex-
istence of positive and negative correlation regions within each
plane. This can be seen in figure 1 for the two cross-flow sec-
tions of Cuu. Note that equation (3) does not require the plane
to pass through the origin, and that it does not apply strictly to
the correlation coefficient in inhomogeneous flows, because of
the spatial dependence of the standard deviations.

Two-dimensional Sections

The streamwise (xy) sections of Cuu centred at y′ ≈ 0.8δ are
given in figure 2, showing that channels are significantly longer
than boundary layers. This agrees qualitatively with published
spectra [5], but it is important to understand that correlations
and spectra are not strictly equivalent. In the first place, stream-
wise spatial spectra in inhomogeneous boundary layers can only
be defined approximately. Secondly, a spectrum at a fixed y, or
even a set of spectra at several heights, contain different infor-
mation from that in a two-dimensional correlation. Consider,
for example, figure 3 that shows Cww. Taking as a reference the
isocontour Cww = 0.05, any analysis involving only y = 0.8δ

would suggest correlations lengths of the order of Lx ≈ 0.7δ,
while the 2D correlation shows that the structure is longer. The
maximum streamwise distance Lm

x ≈ 2.5δ, is between points
at different heights, because the structure is relatively thin but
long and inclined forwards. The effect is also present in Cuu as
showed in figure 2, although less marked.
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Figure 2. Streamwise (xy) sections of Cuu at y′/δ=0.8. (a)
BL6600 at δ+ ≈ 2000. (b) CH2000. Positive contours (black)
are (0.05:0.1:. . . ), and negative ones (red) are (-0.05:-0.05:. . . ).
Flow is from left to right.

Using the same correlation isocontour (0.05), Cuu extends for
Lm

x ≈ 6δ in boundary layers, and for Lm
x ≈ 15δ in channels. In

the y-direction, Cuu spans the whole flow thickness, from very
close to the wall to either the potential stream or to beyond
the channel centerline, whereas Cww is flatter. Both correla-
tions are inclined forwards, presumably as a consequence of the

shearing by the mean velocity profile. Very long features have
been reported in the logarithmic and outer layers of all wall-
bounded flows, variously referred to as “largest”, “very large”,
or “global”. They are known to be correlated across the full
boundary layer thickness [1], and to penetrate the sublayer. The
streamwise lengths given for Cuu in boundary layers are typi-
callyO(4δ-5δ), independent of the Reynolds number [3], while
those in channels and pipes tend to be closer to O(9δ-20δ) [6].
Those numbers are in general agreement with figure 2. In all the
cases Cuu is longer than Cww, as can be seen by comparison of
figure 2 with figure 3, whereas Cww exhibits similar correlation
lengths in both flows, O(2δ).
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Figure 3. As in figure 2, for Cww.

It follows from equation (2) that C(y,y′,x,x′)=C(y′,y,x′,x), so
that, if the correlations centered far from the wall extend into
the inner layer, those centered near the wall must extend into the
outer layers with comparable streamwise dimensions. For ex-
ample, neglecting the streamwise inhomogeneity of the bound-
ary layer, the correlation along y=0.1δ in figure 2 would cor-
respond (not shown) to the x-reflection of the correlation along
y=0.8δ when centered at y′=0.1δ, and their streamwise dimen-
sions must be identical. That agrees with the notion that energy
from the larger outer structures reaches the near-wall layer [2],
and in essence, it reflects that the correlations in that range of
wall distances represent, at least in part, different aspects of the
same large-scale structure extending from the top of the buffer
layer to the outer edge of the flow.

In contrast to the streamwise sections, figure 4 shows that the
spatial organization of the correlations in the cross-flow (zy)
plane is qualitatively similar for boundary layers and channels,
which are shown side-by-side along the spanwise direction, be-
cause of symmetry.

The streaky pattern of the u-structures is revealed in figures
4(a,b), with alternating low- and high-momentum regions sepa-
rated by distances ofO(δ). As in the case of the streamwise sec-
tions, Cuu is also the correlation in which channels differ more
from boundary layers, with the longer streaks of the channels
associated to somewhat wider and taller cross-sections. It is
interesting that, although the streak separation gets wider with
increasing wall distance, it grows more slowly than proportion-
ally to y′. It can be shown that the streak spacing scales in outer
units, as inferred by comparing these correlations with lower
Reynolds numbers cases [9].

The sections of Cvv in figures 4(c,d) are narrower than those of
Cuu near the wall, although the dimensions of the two variables
are much closer to each other in the outer layer. The scale of
Cvv hence varies strongly with y′, as shown repeatedly by pre-
viosly published spectral measurements. The cross-sections of
Cww are shown in figures 4(e,f). Their positive lobes are thin-
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Figure 4. Cross-flow (zy) sections of the correlations at: (a,c,e)
y′/δ=0.1, and (b,d,f) y′/δ=0.8. (a–b) Cuu. (c–d) Cvv. (e–f)
Cww. For each panel, the left side is BL6600 at δ+ ≈ 2000
and the right side CH2000. The positive contours (black) are
(0.05:0.1:. . . ). The negative contours (red) are (-0.05:-0.05:. . . ),
except for (c–d), whose values are (-0.01:-0.02:. . . ).

ner in the wall-normal direction than either Cuu or Cvv, but the
full correlation, including positive and negative regions, spans
a large fraction of the flow thickness and its wall-parallel di-
mensions vary relatively little with y′. As a consequence, the
positive contours of Cww are relatively flat near the wall, and
more square away from it. It follows from the continuity con-
dition that the integral of Cww should vanish over the xy-plane,
and figure 3 shows that the cancellation takes the form of alter-
nating relatively thin layers stacked in the y-direction. The in-
tersection of these inclined layers with the cross plane appears
in figures 4(e,f) as negative lobes above or below the primary
positive contours. The combination of Cvv and Cww in the zy-
sections suggests a quasi-streamwise roller with dimensions of
O(δ), which the streamwise sections in figure 3 show to be in-
clined with respect to the wall. As in the case of the cross-
sections of the u-streaks, the agreement at different Reynolds
numbers (not shown) suggests that the roller dimensions scale
in outer units [9].

Inspection of the (xy) sections of the correlations shows that
those are inclined to the wall, with an inclination angle that
depends of the chosen isocontour. Consider a correlation iso-
contour for a given variable at a given y′. Its (xy) section can
be approximated by an ellipse having the same second-order
tensor of inertia. The inclination α is defined as the angle be-
tween the major semiaxis of that ellipse and the x axis, and a
characteristic inclination angle is defined as the maximum an-
gle found at a given height. This is shown in figure 5. The an-
gles for each velocity component are remarkably uniform across
most of the flow, although different from each other. They agree
much better between boundary-layers and channels than other
measures because the maximum inclinations correspond to rel-
atively small structures controlled by local, rather than global,
processes. Experimental and numerical data is included in the
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Figure 5. Maximum inclination angle as a function of y′/δ.
, αu; , αv; , αw. Lines without symbols are

BL6600 at δ+ ≈ 2000, and those with empty symbols CH2000.
??? is a numerical compressible boundary layer [7], and • are
experimental smooth and rough boundary layers [11].

figure, and agree with our measurements. These angles should
be interpreted to mean that u is strongest when the structures are
aligned to the streamwise direction, v is strongest when they are
normal to the wall, and w is intermediate between the two [4],
because correlations are statistical measures that weight the ge-
ometry of a given velocity field with its squared intensity. Any
characteristic number extracted from the correlation of some
variable most probably represents its geometry when the vari-
able is strongest.

Conditional Correlations

The correlation Cψφ describes the mean value of ψ(r) condi-
tioned to that of φ(r′) but, because it is an average, it retains
no information about the functional relation between the two
variables. If that relation is linear, Linear Stochastic Estimation
(LSE) [10] provides a best estimate for ψ(r) in terms of φ(r′),
but nonlinear relations require higher-order estimates, or condi-
tional statistics. Define the positive conditional correlation,

C⊕
ψφ
(r,r′)|ξ =

〈ψ(r) ·φ(r′)〉|ξ(r′)>µ

σψ(r) ·σφ(r′)|ξ(r′)>µ
(4)

where the three variables involved are not necessarily the same,
and the condition is that ξ(r′) has to be stronger than a given
threshold µ, typically chosen as a fraction of σξ(y

′).

A consequence of the symmetry of the problem in the spanwise
direction is that correlations would be symmetric in z even if
the underlying structures were not. Consider Cww conditioned
on the positive sign of w (µ=0), C⊕ww|w, presented in figure 6. In
both flows, the conditional correlations are aligned to the 45o

diagonal, most clearly so for the boundary layer. By symme-
try, C	ww|w is aligned to the opposite diagonal, and is not shown.
The effect is stronger far from the wall. The shaded contours
that correspond to y′/δ=0.1 are actually slightly inclined in the
opposite direction to those away from the wall. Since we saw
in figure 4 that w changes sign near the wall, this negative in-
clination is probably due to that counterflow. Unfortunately, we
cannot offer at the moment an explanation for this structure.

That w is also able to distort u is tested by C⊕uu|w in figure 7. The
skew is now only ∼ 7o, and probably corresponds to the mean-
dering discussed in Hutchins and Marusic [3]. It can only be
clearly seen when conditioning by relatively strong velocities,
µ=1.5σw, but it suggests that the meandering of u is a conse-
quence of the more obvious diagonal organization of w.
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Figure 6. Wall-parallel sections of C⊕ww|w at y′/δ=0.1 (shaded)
and y′/δ=0.8 (lines) conditioned to w > 0. (a) CH2000. (b)
BL6600 at δ+ ≈ 1530. Positive contours (black solid lines)
are (0.05 : 0.1 : . . .). Negative contours (red dashed lines) are
−(0.01 : 0.05 : . . .). The shaded contours are 0.1,0.3. The
dashed diagonal is inclined at 45o to the mean velocity.
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Figure 7. Wall-parallel sections of C⊕uu|w conditioned to w >
1.5σw. (a) CH2000. (b) BL6600 at δ+ ≈ 1530. Colors and
lines as in figure 6.

Conclusions

Fully 3D two-point statistics of a new zero-pressure-gradient
turbulent boundary layer up to Reθ ≈ 6600 (δ+ ≈ 2000) have
been presented and compared with turbulent channels at similar
Reynolds numbers. We considered very large domains O(20δ)
to observe the largest scales present in the flow and to educe the
average spatial structure of the velocity fluctuations. We have
shown that Cuu is coherent over longer distances in channels
than in boundary layers, especially in the direction of the flow.
Along that direction, the maximum length of the weakly corre-
lated structures is O(18δ) in channels and O(7δ) in boundary
layers. We argue that those correlation lengths do not change
significantly from the near-wall to the outer region because they
essentially reflect different aspects of a common large-scale
structure, implying that the energy from the larger outer struc-
tures reaches the neighborhood of the wall. Along the spanwise
direction the three velocity components present similar widths,
O(δ). The correlations are shown to be inclined to the wall with
different maximum angles that are remarkably uniform across

most of the flow and differ little between channels and bound-
ary layers. The spatial organization of w was shown to consist
in the superposition of two diagonal orientations. Conditioning
the wall-parallel sections of Cww on the sign of w results in a
correlation that is aligned at ±45o to the mean flow in the outer
layer, although not near the wall. Similarly conditioning Cuu on
intense events of w results in correlations inclined at ±7o only
in the outer region. This suggests that the meandering of u is a
consequence of the spatial organization of w, although further
research is needed to clarify the mechanism that leads to that
organization.
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