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Abstract

The prediction of compressor and turbine aerodynamic perfor-
mance in gas turbine engines relies heavily on computational
fluid dynamics (CFD) simulations. Prior to CFD, performance
predictions were largely completed using simplified one- and
two-dimensional methods coupled with empirical loss models.
Although CFD has a number of advantages over the classical
techniques, it does also have a number of drawbacks. Numer-
ical stability, approximations required to model multiple blade
rows, the cumbersome and manual meshing process, simula-
tion time, the requirement for geometric and operational data
to construct the models are some of the issues that need to be
dealt with. The aim of this research is to overcome these draw-
backs by combining the advantages of the current state-of-the-
art in CFD and the speed, efficiency and fundamental under-
standing of legacy one- and two-dimensional methods in pre-
dicting compressor and turbine aerodynamic performance. This
in turn will greatly enhance the efficiency and speed with which
performance predictions are made.

Introduction

This paper presents results of a study in which CFD is used to
conduct a large number of numerical experiments on single sta-
tor and rotor blade rows. Global surrogate models using differ-
ent techniques of blade performance parameters are then con-
structed.

A global surrogate modelling study using numerical experimen-
tation requires four main steps. Defining a parametric model of
the geometry is the first step. The application of an appropri-
ate design and analysis of computer experiment (DACE) tech-
nique to minimise the number of simulations is the second step.
Model construction, meshing and CFD simulation is then fol-
lowed by processing of the data and construction of the surro-
gate model.

The paper presents a novel approach in which the blade is
parametrically described using non-uniform rational B-splines
(NURBS) curves and surfaces based on key blade profile fea-
tures such as chord length (c), blade inlet and outlet anlges (β),
stagger angle (γ), leading and trailing edge radii (r) and wedge
angles (∆β). These features are parametrically defined so that
the blade geometry space is contained within a unit hypercube
and that all parameter combinations yield valid blade geome-
tries.

A stator blade geometry is modelled at a given operational con-
dition using 28 independent parameters. Rotor blade geometry
on the other hand is modelled using two additional parameters,
namely tip clearance and rotational speed. Each blade is defined
using a tip and a hub section profile. Stacking is done either
at the trailing edge (stator) or at the centre of gravity (rotor).
Blade lean and sweep features are accounted for using a total
of four parameters. Sample population is generated using either
the Latin hyper-cube or the Sobol DACE techniques. Geometry,

meshing, CFD simulation and some aspects of post-processing
is then completed using the commercial code Numeca and its
FINE/Turbo suite of tools.

The creation of a large set of blade performance data using CFD
requires a highly automated system in which blade parameter
selection, geometry and mesh construction, CFD solution and
post-processing are performed with minimal human interven-
tion.

Surrogate models of total pressure loss, flow deviation angle,
mass flow rate etc. are constructed using a number of differ-
ent surrogate modelling techniques. These techniques include
artificial neural networks (ANN), radial basis functions (RBF),
support vector regression (SVR), multivariate regression splines
(MARS) and Gaussian process regression or Kriging. Details
of the construction process and results comparing the different
techniques are presented.

Blade Parametric Modelling

The first step involved in designing an automated DACE sys-
tem for gas turbine rotating components requires a robust blade
parametric modelling system. The parametric blade modelling
system needs to meet the following criteria:

• Capable of modelling all possible and realistic blade ge-
ometries. The modelling space should be flexible enough
to generate a wide range of geometries that encapsulate
both existing and expected future blade geometry features.

• Blade modelling should be flexible and allow for future
refinement and/or enhancements. That is, the addition of
new blade features (elliptic leading and trailing edge pro-
files, spanwise blade section resolution, blade cross sec-
tion form complexity etc.) should not require a complete
re-definition of blade parametric modelling system.

• The blade modelling system should not produce incon-
sistent geometric features. Blade section overlapping and
unrealistic geometries should not be feasible.

• Blade parametric model should be based on blade physical
features such as chord length, stagger angle, leading and
trailing edge radii and wedge angle etc. Coordinate based
parameters (x, y or r, θ) should be avoided.

• Blade parametric model should allow for further parame-
terisation within a unit hypercube space. That is, although
not a strict requirement, defining the blade geometry space
within a hypercube will greatly simplify the application of
space filling computer experimentation algorithms and en-
hance the DACE process by eliminating uncertainties.

• Be numerically stable and compatible with the mesh gen-
eration system that will be used to construct and mesh ge-
ometry.



A number of different blade parametric systems have been pub-
lished over the years. These can be loosely grouped into three
categories, the first being feature-based-polynomials where ge-
ometric feature is captured using a summation of polynomials
as demonstrated in [1], blade geometric design parameter based
representation [3, 4] and the Bezier or more generally NURBS
based geometry representation [2].

Blade Section Modelling

The current blade modelling system uses an enhancement of
the last two techniques, namely, the design feature and NURBS
based systems. The blade modelling system used in this study
has a limited number of blade section parameters. This is done
in order to minimise the total number of parameters over which
the computer based experimentation is required. Using NURBS
to represent the blade sections allows the system to be flexible
for future enhancement where additional parameters may be in-
troduced. Figure 1 shows the blade section parametric mod-
elling technique.

Figure 1. Blade section parameters.

Although the blade section modelling system is able to produce
accurate and realistic turbine blade geometries (while maintain-
ing continuity between different components of the blade sec-
tion), it does not satisfy two of the constraints outlined above.
That is, the blade section needs to be further refined and repre-
sented using scaled parameters to conform with the unit hyper-
cube requirement and parameters need to be constrained so that
overlapping and unrealistic geometries are not generated.

Table 1 shows a list of blade section parameters, parametric
equivalent and constraints imposed to eliminate geometry over-
lap and achieve realistic turbine blades.

Min Max
h/c 0.8 1.2
γ 0 60

β∗
LE & β∗

T E 0 60
∆βLE & ∆βT E 4 30

rLE 1 4
rT E 0.2 1

0 ≤ θ ≤ 90
βLE + ∆βLE

2 ≤ 70 βT E + ∆βT E
2 ≤ 70

βLE − ∆βLE
2 ≤ 5 βT E − ∆βT E

2 ≤ 5
*

βLE and βT E when blade rotated so that stagger angle is 0.

Table 1. Blade section parameters and constraints.

Span-wise Stacking

The three-dimensional blade is constructed using two blade sec-
tions defined in the (r, θ) plane. The sections are located at the
hub and tip. When constructing the mesh geometry five blade
sections are defined at 0, 25, 50, 75 and 100 percent span. The
blade section parameters at 25, 50 and 75 percent are obtained

by linear interpolation between hub (0%) and tip (100%) blade
sections.

The blade mean-line reference radius is set at 250mm. The end
wall geometry is defined using two parameters to define a coni-
cal end-wall geometry. The first is the mid-span angle (with the
turbine centre-line) and the second is the ± deviation in the hub
and tip end-walls.

The stacking axis for each blade section is dependent on the
type of blade that is simulated. Trailing edge centre is used
for stator blades and centre of gravity for rotor blades. Two
parameters are used to represent blade lean and sweep each.
Figure 2 shows the parameters used to define blade lean and
sweep.

Figure 2. Blade lean and sweep functions.

The number of blades is constrained such that:

10 ≤ NB ≤ 0.63
omin

(1)

Note that the maximum number of blades is dependent on the
blade section geometry, hence coupled.

The total number of geometric parameters required to represent
a stator and rotor blade is 24 and 25 respectively.

Automated Geometry, Mesh and CFD Simulations

The geometry is constructed using OpenNURBS and SISL
c/c++ libraries. The geometry is then ported to FINE/Turbo
suit of software from Numeca. Autoblade is used to represent
the geometry in FINE/Turbo format and AutoGrid5 is used to
automatically mesh the blade using 04H grid topology. Mesh
optimisation is conducted based on blade geometric features.
Automated mesh quality checking is completed in all cases and
adjustments made to satisfy mesh quality criteria if necessary.
FINE/Turbo flow solver is then used to complete the CFD calcu-
lations. An automated turbo text output file which summarises
key performance parameters along with CFView is then used
to automatically generate performance tables for the simulated
geometry.

The main objective of the CFD simulations is the calculation of
steady state performance parameters such as relative pressure
loss across the blade, flow exit turning angle deviation, flow
and loading coefficients amongst others. Hence all simulation
were conducted using the steady state solver. Each blade geom-
etry was meshed using approximately 800k grid points. The cell
distance at the wall and CFD related reference flow conditions
were calculated using an ideal mean line solution flow condi-
tions and the Blasius equation. The inlet and outlet boundaries
of the mesh were extended by 1/4 distance of maximum axial
chord length at both inlet and outlet. The main constraint in ex-
tending the inlet and outlet flow domains is the adverse effect



caused by area change at inlet and outlet in a tapered configura-
tion where blade height (h) and flow area is changing. Figure 3
demonstrates the turbine blade parametric modelling system.

Figure 3. Blade geometry and mesh modelling system.

In all cases, to achieve flow similarity the inlet total pressure
is set to 10 bar and inlet total temperature to 1000K. Stan-
dard compressible air used to represent the working fluid. The
Spalart-Allmaras turbulence model is used for all experiments
along with the extended wall function to simulate the boundary
layer.

Manufacturing related properties included in the parameter
space includes blade and endwall surface roughess (ε) for both
stator and rotor and tip clearanance (δ) for the rotor.

Operational conditions require the definition of 3 additional pa-
rameters for the stator and 4 for the rotor giving a total of 28
and 30 parameters respectively. Static pressure (P2) at the out-
let, hub and tip absolute flow angles (α) are the three common
operational parameters. Rotor blades require the addition of a
rotational speed parameter (rpm). The constraints imposed on
these parameters can be seen in Table 2.

Param. Stator Rotor
Min Max Min Max

ε 1.00E-07 6.00E-06 1.00E-07 6.00E-06
δ / h NA 0.001 0.1
Pt1/P2 0.5 0.8 Ideal solution dependent
αhub βLE - 20 βLE + 20 20 75
αtip βLE - 20 βLE + 20 20 75
rpm NA 1000 50000

Table 2. Blade operational and manufacturing related parameters.

DACE

A number of different techniques are available for the construc-
tion of space-filling experimental designs. The main focus on
space-filling designs is the spread of experimental points such
that maximum information is extracted with minimum number
of experiments. Popular space-filling techniques include the
Monte Carlo, Latin hypercube and variants (LHS), orthogonal
array (OA) and Sobol sequence to name a few. Although LHS
and OA algorithms yield better space-filling properties, Sobol
was chosen as the DACE method used in this investigation. The
main reason for this is that Sobol does not require the number
of experiments to be pre-determined. Sobol does provide good
space-filling properties while allowing the consecutive addition

of experiment points. This is particularly important in the initial
phases of the experimentation when surrogate model prediction
quality and CFD simulation time and resource requirements are
unknown. The Sobol implementation in [6] was used in this
study.

Surrogate Model Construction and Validation

The increased focus on data mining and machine learning al-
gorithms over the last two decades has seen considerable re-
search being conducted into surrogate modelling algorithms.
RBF, ANN, SVR, Kriging (also known as Gaussian Regression)
are some of the most widely used algorithms to construct mod-
els for large data sets. The main tool used in generating the
global surrogate models was the Python based open source ma-
chine learning library scikit-learn [5] and code written specific
for this study.

One of the objectives of the research program is to evaluate
competing surrogate modelling algorithms to determine how
well they predict gas turbine aerodynamic performance and
what their advantages and disadvantages are compared to one
another.

Each surrogate modelling technique contains a number of meta-
parameters associated with it. Hence, an optimisation process
needs to be undertaken to obtain parameters that yield the best
fit to the data set. Meta-parameter optimisation and validation is
accomplished by initially splitting the data set into a validation
set (25%) and a training (75%) data set. Surrogate model con-
struction is completed on the training set using a 5-fold cross
validation method. In this method the training set is split into 5
equal sizes. For a given meta-parameter set the surrogate model
is constructed 5 times, each iteration leaving one of the 5 sets
out and then testing against the unused set. The coefficient of
determination (R2) is used as a measure of goodness of fit met-
ric. Since meta-parameters include a mixture of continuous and
discrete parameters, a grid search method has been used to reach
optimum surrogate model.

Final validation of the surrogate model and comparison between
competing surrogate modelling techniques is then completed
using the validation set.

Computational Results

Turbine Stator

A total of 6600 computer based turbine stator experiments were
conducted for different geometric and operational conditions as
determine by the Sobol space-filling algorithm. Approximately
5000 of the randomly selected cases were used in constructing
and optimising the surrogate models with the remainder used
for validation. Figure 4 shows the change in the goodness of fit
metric (1-R2) with the number of experiments for total pressure
ratio across the stator. This trend is also observed for surrogate
models of mass flow rate, swirl and relative mach number at
blade exit.

From Figure 4 it can be seen that the goodness of fit reaches
a minimum value around 3500 experiments for all surrogate
model cases. Further addition of experimental cases does not
increase the goodness of fitness. Since 28 parameters are used
to describe the geometry and operational conditions for the tur-
bine stator, the ratio of number of experiments to input parame-
ters is approximately 125.

A comparison of the different surrogate models show that good-
ness of fit using Kriging or Gaussian process consistently yields
the best output. All other techniques yield approximately the
same level of goodness of fit whereas Kriging results, depend-



Figure 4. Goodness of fit plot for stator total pressure ratio vs number
of experiments.

ing on output parameter being simulated yields 40% - 60% bet-
ter results. Considering that Kriging not only provides better
estimates but also yield confidence intervals for the prediction
make this technique more attractive. The ability to generate a
confidence interval at any given point has further applications
in that it can be used to replace and/or enhance the space-filling
algorithm to reduce maximum error band using minimum num-
ber of experiments. This aspect will be the subject of research
in the future.

One disadvantage of using the Kriging surrogate modelling
technique is the computational resources required to find the
best linear unbiased prediction (BLUP). Each iteration in the
optimisation cycle requires a n × n matrix inversion (where n
is the number of data points). The function to be optimised for
BLUP is not convex. Although not essential, this would require
the use of a global optimisation technique which in almost all
cases results in a greater number of function calls (hence matrix
inversions) than a local optimisation algorithm.

The second disadvantage with Kriging is the storage of
the Cholesky decomposition of the correlation matrix. The
Cholesky decomposition matrix can be very large and may
prove difficult to process.

Turbine Rotor

A total of 18000 turbine rotor experiments were conducted
which produced 4500 valid experiment cases. It was assumed
that very little or no information was available about turbine
rotor aerodynamic performance and the outlet boundary static
pressure and rotational speed was allowed to vary such that
0.5 ≤ Pt1/P2 ≤ 0.95 and 1000 ≤ rpm ≤ 5000. This results in
a significantly large portion of experiments producing invalid
simulations.

Constructing surrogate models of the valid turbine rotor exper-
iments total pressure ratio results in the goodness of fit plot in
Figure 5. This same trend is also found in surrogate models of
mass flow rate, swirl and relative mach number at blade exit for
the rotor case.

As it can be seen from Figure 5 the number of experiments to
reach an optimum goodness of fit is approximately 3500. Com-
paring the goodness of fit values with the stator case shows that
the level of fit in absolute terms is not as good as that seen in the
stator case. This is expected as the flow field for a rotating com-
ponent with tip clearance is always going to be much harder to
predict.

Although Kriging still provides a better fit to the rotor experi-
ment data set, the contrast is not that great when compared to

Figure 5. Goodness of fit plot for rotor total pressure ratio vs number of
experiments.

the stator case.

Conclusions

A new blade parametric modelling strategy has been devised
and successfully tested. This blade modelling system is not
only able to construct a wide range of blade shapes and con-
figurations, it is numerically and geometrically robust and can
be represented using a hypercube sampling space.

An automated CFD based experimentation tool has been de-
veloped which allows alternative space filling techniques to be
utilised and experiments conducted without any intervention.
Different techniques have been reviewed and the most suitable
one for the given problem was selected.

More than 24000 simulations were completed in order to con-
struct a viable performance prediction database. A number of
different surrogate modelling techniques were tested. It was
found that the Kriging surrogate modelling technique provided
the best approximation which was also able to yield confidence
estimates to the predictions.
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