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Abstract 

This study numerically investigates the features of oscillatory 

flow around four circular cylinders in diamond arrangements and 

the forces on the structures. At close distances, the flow field 

around the four staggered cylinders may resemble that around a 

single one. It is also observed that at low frequencies of 

oscillation, the flow field is symmetric to the two inline 

cylinders; even the proximity interference is strong. However, the 

flow field is prone to be chaotic due to the asymmetric vortex 

shedding from each member and the interactions of the shed 

vortices, and it becomes increasedly unstable with the increased 

frequency of oscillation, gap distances (to the extent of present 

study) and amplitude of oscillation. The two inline cylinders 

generally experience low drag and inertial force coefficients 

compared to that of two side cylinders, partially due to the wake 

shielding effect. 

Introduction  

The sinusoidally oscillating flows around a circular cylinder have 

been an interest of fluid mechanics for decades, due to the ocean 

engineering applications [3] as well as the rich flow mechanism it 

presents [4], such as wave loads on ocean structures and when or 

how the vortices are generated and shed from the structure. 

Despite the fact that cylindrical structures commonly appear in 

bundle in engineering applications, the study on oscillating flow 

around multiple circular cylinders is scarce. It has been observed 

that the interactions of flows around two cylinders in 

tandem/side-by-side [6] and around four cylinders in an inline 

array [5] lead to much more complex flow features than those in 

the wake of a single cylinder. It is expected that an array of four 

cylinders in a diamond arrangement, as shown in figure 1(a), 

which involves cylinder arrangements in tandem, side-by-side as 

well as staggered, must share similar flow interferences and 

present even more flow dynamics. However, this kind of flow is 

limitedly covered by previous studies [2].  

The behavior of flow fields around a circular cylinder is 

controlled by two dimensionless parameters, the Keulegan-

Carpenter number, KC, and the Reynolds number, Re, which are 

defined as KC = UmT/D and Re = UmD/ν, respectively, where D 

is the diameter of the cylinder, ν is the kinematic viscosity of the 

fluid, Um is the maximum velocity and T is the oscillating period. 

The ratio of Re and KC is referred as the frequency parameter or 

Stokes number, β = Re/KC. Comprehensive flow features 

induced by sinusoidal oscillations of a circular cylinder in 

otherwise stationary fluid at low KC and low β were 

experimentally identified by Tatsuno and Bearman [4] and 

classified into eight fascinating flow regimes.  

There is no doubt that the flow dynamics around a cylinder array 

are greatly influenced by the distances among the cylinders and 

the alignment angle of this array to the direction of the oscillating 

flow, in addition to KC and Re. To explore the influences, this 

work presents a study on the sinusoidally oscillatory flow around 

a four-cylinder array in diamond arrangements, by solving the 

two-dimensional Navier-Stokes equations directly using a finite 

volume method. Three spacing ratios (G) from 1 to 3 are 

examined, where G is defined in figure 1(a) as G = L/D, with L 

being the gap distance between two neighbour cylinders. 

Numerical simulations are carried out at relatively low 

frequencies and amplitudes of oscillations within KC ∈ [1, 12] 

and Re = 150&200, where it is believed that two-dimensional (2-

D) numerical method is validated to capture the sectional flow 

features [5] [6]. Our scope is to identify the flow regimes of the 

four-staggered cylinders in comparison with that of a single one 

and to investigate how the flow field is dependent on G, KC and 

Re. Due to the wake and proximity interferences, a variety of 

distinct flow patterns and diverse force features are expected. 

 
Figure 1. Schematic representation and mesh distributions of the four 

circular cylinder system. (a) computational domain. (b) view of the mesh 

surrounding the cylinders, which consist of layers of structured 

quadrilateral cells from cylinder surfaces, followed by unstructured 

triangular cells in near fields and structured cells in the far fields.  

Numerical Methods 

Oscillatory flow around the four-cylinder system shown in figure 

1(a) is simulated by solving the 2-D Navier-Stokes (NS) 

equations. The dimensionless form of 2-D NS equations for 

incompressible flow in the Cartesian coordinate system can be 

expressed as [1],  
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where the velocity U has two components Ux and Uy in the x- 

and y-directions, respectively, t is time, and p is hydrodynamic 

pressure. The NS equations are solved using the Open source 

Field Operation and Manipulation (OpenFOAM®) C++ libraries, 

which is a free source CFD package developed by OpenCFD Ltd. 

The finite volume method is used in the solver and the pressure-

velocity coupling is achieved following the Pressure Implicit 

with Splitting of Operators (PISO) method. The convection terms 

are discretised using the Gauss cubic scheme, while the 

Laplacian and the pressure terms in the momentum equations are 



discretised using the Gauss linear scheme. Euler implicit scheme 

is adopted for the temporal discretisation.  

A relatively large rectangular computational domain (100D  

100D) similar to that shown in figure 1(a) is employed in this 

study, with the cylinder array being placed at the centre of the 

domain. The initial values for flow velocity and pressure in the 

whole domain are set to be zero. Flow velocity on the left 

boundary is specified as 
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The pressure and the velocity gradients in the x-direction are set 

to be zero at the right boundary and the symmetric boundary 

conditions are applied at the two lateral boundaries that are 

parallel to the flow directions. The no-slip boundary condition is 

adopted on the cylinder surfaces. Figure 1 (b) illustrates the mesh 

distribution of the cylinder system. The computational domain 

and mesh sizes were determined through a domain and mesh size 

dependency check, which is not detailed here. 

 
Figure 2. Comparison on velocity component between the present results 

(lines) and FEM numerical data (symbols) by Zhao and Cheng [6] for KC 

= 5, β = 20. □/―, ξ/D = -0.    /      , ξ/D = 0.0   /       , ξ/D = 0.    /          , 

ξ/D = 1.2. Coordinates transformed principles are list in Figure 4 from 

reference [6].  

The numerical model was validated extensively against 

independent experimental and numerical results available in 

literature for oscillatory flow around a single cylinder [5], where 

good agreement with published force coefficients and flow 

regimes was reported. The validation checks will not be repeated 

here except that the velocity distributions of the present 

numerical results are compared with published data [6] in figure 

2, where excellent agreement is achieved. 

Flow Features 

The flow features at Re = 150 are discussed here and are 

illustrated in figure 3 for different gap ratios and KC. The time 

history of the lift coefficients on cylinder 1 for selected KC and G 

are shown in figure 4, where CL = Fy / (ρDUm
2 / 2), with Fy being 

the force in the y-direction. At this Re, Tatsuno and Bearman [4] 

found regime A* and A for KC smaller than about 5.5, regime F 

for KC larger than approximately 7 (to beyond 12), and regime D 

between 5.5 and 7. In figure 3, the flow fields are visualized 

through streaklines in 10 oscillatory cycles, which are generated 

by releasing massless particles at 80 points around the cylinder 

surface with a frequency eight times of the flow oscillatory 

frequency. 

For four staggered cylinders at G = 1, they behave similar to a 

single cylinder at most KC and the flow field at KC ≤ 5 shows 

much similarity to regimes A* and A that were observed for a 

single cylinder [4]. The released particles are symmetrically 

distributed to the direction of motion when they are taken away 

by the oscillatory flow, even those released on the surfaces of 

two side cylinders 1 and 3 seem to be attracted to the centre line 

before being convected. However, the flow regime D, where the 

flow is obliquely convected to one side of the axis of oscillation 

by transverse vortex streets, is not present at G = 1, but rather the 

flow changes to regime F at KC = 6, where the flow is featured 

with two vortex streets aligned in a diagonal straight line at the 

two sides of the oscillatory axis, although the alignment angle is 

less than 5°. A key observation at KC = 7 is that the streaklines 

bended in a way similar to regime C of a single cylinder, This 

observation is also evident in the time history of lift forces shown 

in figure 4(a), where a clear secondary period is found and it is 

about 7 times of the oscillatory periods. This rearrangement of 

vortices disappears at KC = 8, where the streaklines are 

distributed in a way of typical regime A. Beyond KC ≥ 9 the flow 

fields tend to be chaotic and no regular features are readily 

identifiable.  

For G = 1, it is observed from figure 4(a) that the force is very 

stable when KC ≤ 8 while it is featured with random peaks at KC 

= 9 and 10. Very small lift coefficients are detected for KC ≤ 5 

because of the weakness of vortex shedding. The amplitude of lift 

coefficient is much larger at KC = 5, 6 and 7 than that at other 

KC because the vortex shedding from inner side of cylinder 1 and 

3 is largely constrained at these cases, leading to much slimmer 

streaklines than, for instance, that at KC = 8 and 9. When KC 

exceeds 9, vortex shedding from each cylinder occurs and the 

interaction among these shed vortices also introduces turbulent 

features into the lift forces.  

With increased gap distance at G = 2, the flow feature is very 

similar to G = 1 at the corresponding KC, but only the flow field 

turns to be turbulent at KC ≥ 8. It should also be noted that at KC 

= 6, the fluid particles are convected in the same side to the 

oscillatory flow, similar to its counterpart in regime D for the 

single cylinder.  

At larger gap distances, the flow usually quickly turns into 

turbulence with irregular flow fields, for instances, for KC ≥ 8 at 

G = 2 and for KC ≥   at G = 3, and it is concluded from the three 

gap ratios that the flow fields are easier to be unstable at larger 

gap distances. The chaotic flow fields are due to the asymmetric 

state of vortex shedding from each cylinder, as it presents in 

regimes D, E and F for a single cylinder and also because of the 

interaction of the shed vortices in the confined space around the 

cylinders. The flow field is also increasingly unstable with the 

increase of Re. For instance, the flow field changes to be chaotic 

from KC ≥ 5 at G = 2 and Re = 200. However, at low KC and/or 

Re, the four staggered cylinders present a symmetric flow flied. 

The released particles from two side cylinders (1&3) tend to be 

attracted by cylinders 2 and 4 and convected in the oscillatory 

direction. This flow feature is partially attributed to gap-vortex-

shedding or gap flow between cylinder 2 and cylinder 1 or 3, 

which has been detailed in Zhao and Cheng [6] and Tong et al. 

[5]. It is seen from the present study that even in the staggered 

arrangements, the gap flow also plays a significant role in 

attracting fluids particles. As it is seen clearly from KC = 5 at G = 

3, the attraction of gap flow between cylinders 1 and 2 induces 

bending streaklines to the two inline cylinders 2 and 4. As a 

result, the streaklines on the right hand of cylinder 1 create an 

inner-wards circulation zone, while the streaklines on the left 

hand of cylinder 1 also bend to the centre line when they are 

convected away.  

Consistent with the observations on flow features at G = 3, the 

lift coefficients are featured with vagrant vibrations for KC ≥  , 

embedded with randomly low and high vibrations. The relatively 

large amplitude of lift coefficient at KC = 6 and 7 and G = 1 

disappears at G = 3 due to that the increased gap space releases 

the constrained vortex shedding from inner sides of cylinder 1. 

An interesting feature of unstable asymmetric vortex shedding is 

found at KC = 7. Between 50 < t/T < 75, the mean lift is positive, 
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indicating the vortex shedding is only from the inner side of  

cylinder 1 and then are convected outwards, while from t/T = 75 

onwards, the mean lift changes to be negative, suggesting a 

transition between the asymmetric direction in vortex shedding 

from the cylinder. This feature is similar to that observed in 

regime E around a single cylinder.  
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Figure 3. Simulated flow patterns represented by streaklines for oscillatory flow past four circular cylinders in diamond arrangemen at Re=150 and various KC 

and gap ratios. 

 
Figure 4. Time histories of the lift coefficient on cylinder 1 in the four 

staggered cylinders at various KC and Re = 150. (a) G = 1; (b), G = 3. 

Force Coefficients 

The calculated inertia and drag coefficients, CM and CD of 

cylinders 1 and 2 are compared with that of a single cylinder in 

the same flow condition in figure 5 (a&b), respectively. The drag 

and inertia coefficients are derived through the least square 

regression analysis of the inline force on the cylinder based on 

Morison equation, 
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where, Fx is the force on the cylindner in the inline direction and 

is obtained by integrating the pressure and shear stress along the 

cylinder surface.  

One major observation is that the inertia and drag coefficients on 

cylinder 1 is larger than that on cylinder 2 at low KC, and from 

figure 5 it is observed that they are scattered on each side of the 

dashed lines, representing the force coefficients of a single 

cylinder. This is because of the wake sheilding effect, since 

cylinders 2 and 4 are in the wake of each other, resembling the 

drag reduction on the downstream cylinder of two tandem 

cylinders in steady flow. On the other hand, cylinders 1 and 3 not 

only directly face the incoming flow, but also are in the shear 

layers of cylinders 2 and 4, where significant high velocity is 

expected. However, this observation in the inline force 

coefficient experiences a dramatic change at KC larger than about 

6, where the aymmetric vortex shedding make any regularity 

hard to be identified. But it is generally true that the drag 

coefficient on each cylinder in the staggered four is smaller than 

that of the single one at KC > 8, while the inertia coefficient is 

usually larger than that of the single cylinder. 

The total root-mean-square (RMS) lift coefficient of the four 

cylinders and that on cylinder 1 are compared with those of a 

single cylinder in figure 6(a), where the total lift is divided by the 

number of the cylinders before the comparison. The magnitudes 

of the total lift force are significantly smaller than that of the 

single cylinder due to the fact that lift forces on cylinders 1 and 4 

are usually in the opposite direction. The CL-RMS seems to rise 

with the enlarge of gap distances due to the increased vortex 

interactions. At KC = 8, where the vortex shedding from a single 

cylinder forms into regime F, the four staggered cylinders 

experience a drop in RMS lift coefficient as well, in agreement 

(a) 

(b) 



with that of the single cylinder. This feature indicates that even 

the cylinders in close distance affect the flow field around each 

other and bring inidentifieable flow field at G = 2 and G = 3, they 

still behave independently to a certain extent. In contrast, any 

member cylinders in the diamond arranged four cylinders 

experiences quite large magnitude of lift forces, which is evident 

from the time history of lift forces as shown in figure 4(a).  

 

 
Figure 5. Inertial and Drag coefficients on two selected members in the 

array of four staggered cylinders compared to those of a single one under 

the same flow condition.  

 

 
Figure 6. Comparison of the RMS lift forces on cylinder 1 (a) and on the 

array as a whole (b) with those of a single cylinder at Re=150.  

Figure 6 (b) illustrate the RMS lift coefficient on cylinder 2. It is 

observed that the trend of variations of lift on cylinder 2 

generally agree with that of the total forces as shown in figure 

6(a). Although the lift on cylinder 2 is still small at most KC, the 

magnitude is much more comparable to that of the single 

cylinder.  

Conclusions 

This study investigates the features of oscillatory flow around 

four circular cylinders in a diamond arrangement and their impact 

on forces on these structures. At close distances and low 

frequencies of oscillation, the flow field around four staggered 

cylinders resemble that around a single cylinder, and regimes A, 

A*, D and regime F are detected, however, usually at a KC 

number different from that of a single cylinder.  

The interferences of the four cylinders also present symmetric 

flow fields to the direction of inlet flow, which are mainly found 

at KC numbers in regime A for a single cylinder. The massless 

particles released from the two sides of the cylinders usually 

attracted by the gap flow to the centred two cylinders before 

being convected away.  

It is found that when cylinders are placed in staggered 

arrangements, the flow field is prone to be chaotic due to the 

influences of asymmetric vortex shedding from each member and 

the interactions of the shed vortices. The flow field becomes 

increasedly unstable with the increased gap distances as well as 

increased Re.  

The two inline cylinders generally experience low drag and 

inertial force coefficients compared to that of two side-by-side 

cylinders, partially due to the wake shielding effect and to the 

fact that the side cylinders are in the shear layer of the two 

centred ones.  
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