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Abstract

The immersed boundary (IB) method is a novel strategy ta trea
the boundary condition of a solid immersed in a fluid. In the
original IB method, the forces exerted by the solid on thedflui
are spread to grid points in the vicinity of the solid bourydar
in order to account for the effect of the solid. Then the Navie
Stokes equations with additional body forces are solved on a
Cartesian mesh. This treatment can get reasonable vethisity
tribution near the fluid-solid interface. The primary acheaye

of the IB method is that the grid generation is greatly sifgadi

and the mesh movement/regeneration is avoided.

Since the initial idea of the IB method, many additional eas

have been developed to enhance the capability and to improve

the performance of the method. In this paper, we will intro-
duce our recent developments for the IB solvers: the IB ntetho
based on the lattice Boltzmann method, the sharp-intetface

method based on the finite difference method, and extensions

to other physical equations. A variety of applications & tB
solvers will be demonstrated. The applications includedhs
flight, fish swimming, red blood cells, fluid-structure irder
tion during phonation, heat transfer and electrodynamics.

Introduction

Numerical methods based on fixed grids have attracted ggowin
interest in recent years due to their advantages in handting
plex/moving boundaries. The immersed boundary (IB) method
which is the most notable among them, has gained popularity
for a wide range of applications in recent years. The IB m&tho
first developed by Peskin [8], is a novel strategy to treat the
boundary condition of a solid immersed in a fluid. In the orig-
inal version of the IB method, a continuous force is distieob

as a body-force term onto the volumetric mesh in the viciofty
the boundary in order to account for the effect of the boundar
The Navier-Stokes equations with additional body forces ar
then discretized on a fixed Cartesian grid. Later, sevenailifes

of the IB method have been developed, examples are the direct

forcing approach based on local flow reconstruction in [[22]L
and the projection approach by Taira & Colonius [12]. The un-
derlying ideas of these works are very different depending o
the specific implementations. Nevertheless, all of thessve-

s of the method are able to treat the irregular and time-ngryi
boundaries using a fixed, single-block Cartesian grid. &her
fore, they share the merits of simple grid generation, eiffici
computation on the structured grid, and easy partitiondase
domain decomposition.

Given its advantages, the IB method is particularly suéabl
for simulation of the flows involving complex geometries and
large-deformation boundaries, for example the biologarad
biomedical fluid—structure interaction (FSI) problemshe tis-
sue and organ levels [15]. In this paper, we will introduce ou
recent progresses in developing the IB method and its applic
tions in insect flight, fish swimming, red blood cells, FSlidgr
phonation, heat transfer and electrodynamics.

Immersed boundary-lattice Boltzmann method

In this method, the fluid flow is solved by the lattice Boltzman
(LB) method. In the present LB method, the kinematics of the
fluid is governed by the discrete LB equation of a single relax
ation time [2, 17],
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whereg;(x,t) is the distribution function for particles with ve-
locity g at positionx and timet, At is the size of the time step,
gieq(x, t) is the equilibrium distribution functiort, represents the
nondimensional relaxation time, a@lis the term representing
the body force effect on the distribution function. In Eo).,@rBq
andG; are calculated according to
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wherewy are the weighing factorsy is the velocity of the fluid,
Cs is the speed of sound defined by= Ax/+/3At, andf is the
body force acting on the fluid. The relaxation timés related
to the kinematic viscosity in the Navier—Stokes equations:

v = (1—0.5)c2At. (4)

In the 2D nine-speed (D2Q9) model [11], as shown in fig-
ure 1(a), the nine particle velocities are given by
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whereAx is the lattice spacing. The weight factors are given
by wo =4/9, 0y =1/9 fori = 1 to 4 andwy = 1/36 fori =5

to 8. In the 3D nineteen-speed (D3Q19) model [11] shown in
figure 1(b), the particle velocities are defined by
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The weight factors of D3Q19 model take the valugs= 1/3,

w =1/18 fori = 1 to 6 andwy = 1/36 fori = 7 to 18. The
values ofg ensure that within one time step, a fluid particle
moves to one of the neighboring nodes as shown in figure 1, or
stays at its current location.

Once the particle density distribution is known, the fluidsiey,
velocity and pressure are then computed from
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Figure 1: Lattice Boltzmann models: (a) Nine base vectors
representing 9 possible velocity directions in the D2Q€fdat
model; (b) Nineteen base vectors representing 19 possible v
locity directions in the D3Q19 lattice model.

The energy of the plate can be divided into elastic energytalue
deformation Ep, and the kinetic energgy, which are defined
as,

1/ e , ,
p = é/ > (Wi (T —8ij)%+vij (Bij)*]dA,  (6)
i,]=1
1 X
Ek = émp/|ﬁ sz7 (7)

wheremy, is the density of the platey is the dimension of the
plate,Tij = (0X/0s v6X/asj)1/2 is the stretching and shearing

effects,Bj; = (92X /dsdsj - 92X /dsds;) "/ is the bending and
twisting effects,jj is the stretching and shearing coefficients,
Yij is the bending and twisting coefficients and summation con-
vention is not applied on bothand j. For 1D filamentng = 1
and the integral is taken along the filament, while for 2D elat
ng = 2 and the integral is taken over the whole plate. The poten-
tial energy of external force (hydrodynamic force in thesem
work) is expressed by

Ep= /Ff -(X=X%dA, (8)
whereX? is the initial position of the structure. Then the total
potential energy of the plate can be definedby- Ex — Ep +
Ej. By using the Hamilton'’s principle together with the vari-
ational derivative of the total potential energy, the goueg

equation for the plate is obtained,
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wheregjj = gjj(1-§;;/Tij). Note that Eqg. (9) is equivalent to
that in Ref. [17,25] for 1D filament and Ref. [5, 16] for 2D m@at
if the stretching and shearing effects are small.

92X

Explicitly including the inertial force of the structure the 1B
method when calculating the hydrodynamic stress on the sol-
id surface may easily destabilize the simulation. To addres
this issue, we have incorporated a penalty IB method in the L-
B method [17]. In this method, the plate itself is assumedeto b
massless, but a ghost plate of densityis attached to the phys-
ical plate through virtual springs of stiffne&s (see figure 2).
The ghost plate only affects the dynamics of the physicakpla
but is not seen by the flow solver directly. Thus, the dendity o
the fluid is a constarg, and the Lagrangian force is modified to
incorporate the ghost plate,

2
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F=F+Fe, F=Ky[Y =X], mpF = —Fy, (10)
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Figure 2: The physical and ghost filaments are tetheredheget
by virtual springs [17].

(d)

Stenosed vessel

Red blood cell

Figure 3: Applications of the IB-LB method: (a) 2D
NACA0012 fail, (b) 3D elliptical foil, (c) two flags in tandem
arrangement, and (d) a 3D red blood cell in a stenosed ves-
sel [3].

whereFy is the spring forceFe is the elastic force given by

2 2 . .
Fe=y1_, [a% <0ij%) - #as,- (wjt;;—g(sj)], Ky is the stiff-
ness of virtual springs, an¥ is the position vector of the
point on the ghost plate connecting to pokiton the phys-
ical plate. Essentially, the effect of the inertia of the ghho
plate is cushioned through the virtual springs. This method
has been used to simulate hydrodynamic interaction between
the flexible plates/capsules and the incompressible viscou
flow [13,17-19].

The Lagrangian velocity, position of the physical plated an
body force can be discretized as follows,

un+l = z U™ (x,t)3h(x — XMAV, XM = X" UM, (11)
X
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In Eq. (12),AA = As and AsAs, for the 1D and 2D plates,
respectively, while in Eq. (11AV = AxAy andAV = AxAyAz

for the 2D and 3D simulations, respectively. The notatiygs
andy, mean the sum over all the discrete pointsXoénd the
sum over all the discrete pointsxfrespectivelydy is a smooth
approximation of Dirac’s delta function [9, 10]. This versiof
IB-LB method has been used in fish swimming, flag flapping
and red blood cell [3,13,17-19, 22, 23], as shown in figure 3.

Sharp-interface immersed boundary—finite element method

In this section, we introduce the sharp-interface |B—firdte
ement (FE) method for 3D FSI involving large deformations.
The IB method for fluid solver was previously developed by
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Figure 4. 2D schematics illustrating the sharp-interface i
mersed boundary method: (a) interpolation stencil, anexb)
trapolation stencil [3].

Mittal et al. [7] and later improved by Luo et al. [6] and Tian
et al. [14, 15]. This method retains the sharp-interfaceerep
sentation of the fluid—solid interface and employs local ftew
construction to facilitate the finite difference discratibn near

the immersed boundary. The 2D schematics of this method is
shown in figure 4. When the second-order central difference
scheme is applied to discretize the Navier—Stokes equsaiion
the fluid region near the fluid-solid interface, incompletiens

cils could be encountered. Specifically, on the n@dg) in fig-

ure 4(a), the finite difference stencil will involve nodgs- 1, j)

and (i, j — 1) that are located inside the solid body. Here we
introduce two methods to update the variables on nadg.

In the first method, the variables dn j) are interpolated by
using the interpolation stencil shown in figure 4(a). A bodly i
tercept (BI) point can be found by projecting tfiej) onto the
boundary along the surface normal. The variaplen the local
area aroundi, j) is approximated by = ajxy -+ axx+agy+au,
whereay, ap, ag and a4 can be determined by using the val-
ues on BI, together with (i+1,j)(i,j +1), and (i +1,j +1).
Then the value offi, j) can be obtained by; j = Zﬁmzl Bmdm
wheredn, is one of the 4 data points. In the second method, we
first apply the extrapolation, and then use the finite difiese
method. As shown in figure 4(b), to calculate the valuéioj),

the values or{i — 1, j) and (i, j — 1) are first extrapolated, and
those on(i, j) are then calculated by using the finite difference
method. Take nodé — 1, j) as an example, the BI point can
be determined by the same way as the interpolation. The image
point (IP) can be found by taking the symmetrical point about
the boundary. The value on IP can be determined by using the
shaded stencil, i.e. the values at previous time step ofi B),
(i,j+1),and(i—1,j+1). Thend ; ; = 20g, — o[ There-
fore, ¢“+1 can be updated by the finite difference method. Itera-
tion is requwed in the cases where the points used to inggo
the unknown values are in the solid region or immediatelyt nex
to the interface. In the practice, the numerical oscillaim the
moving boundary problems associated with the sudden change
of the stencils can be effectively reduced by applying thericly
scheme of these two methods [6, 14, 15].

The FE formulation in the structure solver is derived frora th
standard virtual work method. Let the displacement in a vol-
ume element be representediX,Y, Z) = S h(X,Y, Z)uy =
[H]{u}, wherehg(X,Y,Z) is the shape function associated with
thekth node in the element ang, is the displacement at this
node. Other variables can be expanded in a similar manner.

Using the virtual work of the inertial load, body forée}, and
surface tractio f } along with the expansion of the variables,
the assembled equation system for the entire body can be writ

Figure 5: Applications of the sharp-interface IB-FE method
(a) vortical structures around a hoverfly and (b) modellifig o
vocal-fold vibration [15, 20].

ten as

MJ{0} + [C]{u} = {P} - {F},

where [M] is the mass matrix|C] is the mass-damping ma-
trix, {P} is the force vector from the external load, afié}

is the body stress vector. These assembled terms can be found
in Refs. [14, 15]. For general 3D bodies, hexahedral (orkbric
type) quadratic 20-node elements [1] are used in the FE for-
mulation. The FE formulation of the thin-walled structunes
cludes the three-node plate elements and two-node frame el-
ements, where each node has six global degrees of freedom,
including three displacement components,and three angles

of rotation, @. The discrete equations can be written in the
same forms as in the general structure form, except {that
represents the generalized displacement vectorgyiticluded
and[oX] represents the generalized stress with moments includ-
ed. The large-displacement and small-strain deformatidhe
structure solver is handled using the corotational scherhe.

time stepping is achieved using a case of Newmark scheme [4].

13)

The fluid—structure coupling is done by iterating the two/eol

s by exchanging the boundary information until convergeaace
reached. The residuals as measured by the maximum errors of
the displacement, the velocity, and the traction at thelssali-

face are used to determine whether final convergence isedach
To ensure the numerical stability of this staggered iteratihe
velocity of the solid surface are updated in the flow solvea in

gradual fashion according uﬂ‘“ oxvp +(1- a)vé )7 where
vg is the predicted velocity by the structure solver ani the
relaxation factor between 0 and 1. The displacengnin the
flow solver and the tractiofr; in the structure solver can be
updated in a similar manner if necessary.

This method has been used in insect flight, and FSI during
phonation, as shown in figure 5.

Immersed boundary method for heat transfer and electro-
dynamics

Heat transfer can be described %&Jr u-OT = kO2T. To ac-
count for the effect of the boundary, a heat source is applied
in the convection-diffusion equatior%% +u-0OT =k?T +q,
whereq is the heat source which is obtained by spreading La-
grangian heat sourd@ to the points near the boundary. For the
Dirichlet boundary conditionQ atn+ 1 step is calculated by

Q™ = (Tg—T")/At+u". OT" —kO?T", (14)

whereTg is the boundary temperature. For the Neumann bound-
ary condition,Q is determined by

Nl oT"
Q= 2(Qe k). (15)



In the electrodynamics applications, the Poisson equation
02¢ = —q, is generally used to describe the electric potential
field ®. This equation can be rewritten@®/dt = ke(12®+q)
wherert is the pseudo time. Then similar treatment as in heat
transfer can be used.

Conclusions

The IB method based on LB method and FE method has been
briefly introduced. The applications in insect flight, fishimw
ming, red blood cells, FSI during phonation, heat transfel a
electrodynamics have been demonstrated. It shows thaBthe |
method is effective in modelling complex flows, fluid-stnuet
interactions and convection-diffusion processes.
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