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Abstract

This paper undertakes a dynamic mode decomposition of under-
expanded jets in order to extract fundamental instability modes
near the nozzle from the flow field. Topological information
and evolution of the extracted modes are then determined as a
function of axial distance from the nozzle. This information will
allow for the extension of models used to predict the acoustic
radiation processes of such jets.

Introduction

Acoustic feedback in under-expanded free-jets has been a topic
of research over the last five decades with a global summary
provided in [9]. It is understood that the feedback loop is due to
large scale coherent structures present in the shear layer inter-
acting with the core shock cells and that the attenuation of these
structures may significantly reduce the broadband and discreet
(Screech) noise generated. However the details of the dynamics
of these large scale structures and the significant changes that
occur due to a change in the jets nozzle pressure ratio (NPR)
are still not well understood. In order to gain a better under-
standing of the topology and dynamics of these structures the
dynamic mode decomposition (DMD) technique will be applied
to high resolution numerical datasets.

Reduced models are often used to determine the generation of
acoustic waves due to the shock-vortex interaction [8] as well as
due to Mach wave radiation [10]. Such models assume an uni-
form, isotropic and regular vortex structure in the shear layer.
However in reality, coherent structures do not fit into these cat-
egories. Therefore this paper seeks to determine the topology
of the coherent structures in such a jet for the future extension
of the models mentioned.

In this study we consider a purely convergent under-expanded
circular free jet with nozzle pressure ratios NPR={2.2,3.4} and
a nozzle lip thickness tn/d = 1/3 where d = 15mm is the nozzle
diameter.

Numerical Dataset

The free-jet dataset used in this study is the result of a three
dimensional hybrid large-eddy simulation on a non-uniform
structured cylindrical grid. For spatial differentiation the hybrid
solver employs a sixth order central finite difference scheme
for smooth regions and a fifth order weighted essentially non-
oscillatory scheme with local Lax-Friedrichs flux splitting in
discontinuous regions. Temporal integration is performed us-
ing a fourth order five step Runge-Kutta scheme. The sub-grid
scale terms where computed using Germanos dynamic model
with the adjustments made by Lilly [3]. The domain consists
of approximately 16.4 million nodes with the spatial extent of
30d downstream and 15d the radial direction. Locally one-
dimensional inviscid compressible boundary conditions defined

in [6] are used for the adiabatic nozzle wall and outflow re-
gions. Sponge regions are employed near the outflow boundary
were the flow field is forced to a self-similar incompressible jet
solution that has been determined a priori. The jet inlet veloc-
ity profile was modeled using the hyperbolic-tangent function
found in [1] while the temperature profile was determined using
the Crocco-Busemann relationship [7]. No inlet turbulence has
been applied. The NPR = 2.2 and NPR = 3.4 cases have com-
pleted approximately 48,500 and 61,950 time steps or t/t0 = 48
and t/t0 = 31 turn-over times respectively where t0 = d/u j and
u j is the nozzle exit velocity (≈ 310m/s).

Mean and Temporal Statistics

Mean velocity and fluctuating velocity profiles are provided in
figure 1 where it may be seen that the first shock reflecting
points are 0.62d and 1.41d for the NPR = 2.2 and NPR = 3.4
respectively. Spectra of the fluctuating velocity for NPR = 2.2
and NPR = 3.4 that was sampled at the center of the shear layer
at positions x = 0.9d and x = 1.9d respectively, may be seen in
figure 2. For NPR = 2.2 the first instability mode is visible at
St = 1.79 with its first harmonic at St = 3.63. The peak for the
first instability mode in the NPR = 3.4 case is not as pronouced
but may be seen at St ≈ 1.46 with its first harmonic at 2.98.
These results compare well with linear stability theory exam-
ined by Michalke [4], however for Screeching jets the Strouhal
number expected is approximately St ≈ 0.4 [5]. It has been rea-
soned that this is due to the lack of a nozzle lip at the outflow
boundary region which is preventing or substantially modifying
the receptivity of the shear layer to the acoustic waves generated
by the vortex shock interaction. Therefore in this paper the in-
stability modes investigated are those inherent to the jet rather
than the modes expected to be generated by the screech feed-
back mechanism. Modified boundary conditions are currently
being investigated to achieve the screeching modes.

Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) calculates the Koopman
modes describing the transient linear components of a non-
linear flow field. We may decompose a transient non-linear flow
field as

∂u′

∂t
(x, t) = Mu′ (x, t)+ f(x, t) (1)

where M is a linear operator and f contains the non-linear resid-
uals not captured by M. It is then assumed that the flow field
may be represented by a set of harmonic oscillators, individu-
ally represented as

u′ (x, t) = û(x)Ke−iΩt (2)

The two equations above lead to an eigenvalue problem which
produces a set of spatial eigenvectors (û) with correspond-
ing eigenvalues (Ω) describing the temporal frequencies and



Figure 1. Temporal mean of the velocity (a) and fluctuting velocity (b) for NPR = 2.2 (top half) and NPR = 3.4 (bottom half).

growth/decay rates associated with each mode. It is expected
that the screech instabilities will not exhibit any globally un-
stable growth or decay as they are a part of a limit cycle and
therefore the DMD eigenvalues representing these modes will
lie on the unit circle of the complex plane. The method of pro-
jecting DMD modes onto a proper orthogonal decomposition
mode basis as outlined in [2] is utilized in order to reduce the
computational effort of the analysis.

DMD modes were extracted for each case at the positive and
negative peak frequencies found in the spectral analysis (See
figure 2). The temporal evolution of each mode was generated
by reconstructing them at different phases (φ) over their cycle.
Iso-surfaces and a half plane contour map of planar vorticity
(ωθ) for NPR = 2.2 may be seen in figure 3. Near the nozzle
it can be clearly seen that the mode is toroidal with only slight
variations in the azimuthal direction. NPR = 3.4 exhibits a sim-
ilar toroidal mode. Both cases exhibit vortex pairs close to the
nozzle which merge at axial positions of x ≈ 0.8d and x ≈ 1.4
respectively.
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Figure 2. Flutuating velocity spectra for both cases sampled at
the center of the shear layer in the center of the second shock
cell.

Characterisation of Near-Nozzle Coherent Structures

In order to characterise the topology of the vortical structures
an algorithm was created to determine the location of the peak
planar vorticity for each coherent structure in each azimuthal
plane of the generated DMD modes. A brief overview of the
steps the algorithm takes in identifying these shapes follows:

• The maximum planar vorticity is found along each axial
plane and the samples below 40% of that maximum are
discarded.

• A coherent structure map is generated using a clustering
algorithm and discarding structures that do not span the
entire azimuthal direction.

• For each coherent structure the local position of maximum
vorticity is found (xc,rc).

• For a range of angles within [0,π) from the jet axis,
rays are projected forward and backward to determine the
structure’s diameter (dc) at that angle.

An example of the identified features in a single plane can be
seen in figure 4. White circles represent the position of the lo-
cal maximum for a given vortex structure and the dashed lines
are representative of the structures size. Due to the weak nature
of the vorticies close to the nozzle outlet the identification algo-
rithm becomes less accurate. As will be seen this leads to some
spurious noise in the extracted data in these regions.

The variaton of the coherent structures’ axial and radial posi-
tion in the azimuthal direction is plotted in figure 5 as a func-
tion of the mean axial position. In both cases the variation is
low closer to the nozzle representing fewer azimuthal variations
in the toroidal structure. At the shock reflection point in both
cases the radial variation increases significantly and recovers
within 0.2− 0.5d. Increasing variations along the axial direc-
tion is likely to be representative of the breakdown of the vorti-
cal structure.

As the azimuthal variation of the structures are small in our sam-
pled region the evolution of the structures’ shape and intensity
properties are determined using their mean in the azimuthal di-
rection. Figures 6, 7 and 8 are plots of the minimum/maximum
structure diameters, structure orientation and peak vorticity rel-
ative to the maximum as functions of the mean axial position
of each structure. As may be seen in figure 6, the anisotropy of
the vortex (ratio of minimum to maximum diameters) decreases
significantly at the shock reflection point. For both cases the
vortex pairs seem to wrap around each other and merge just
downstream of the shock reflection point. This may be due to
the modulation of the inner vortex at the shock reflection point
which rapidly breaks the pair’s symmetry. This effect may also
be more clearly seen in figure 7 where the orientation of the
vortex flips just downstream of the shock reflection point. In
both cases there are two distinct linear growth regions of peak
vorticity before the first shock reflection point. The maximum
peak vorticity occurs at the shock reflection point after which
the vorticies loose strength. For the vortex pairs the outer vor-
tex has a lower peak vorticity than the inner vortex, this signifies
that there is more energy being transferred to the inner vortex,



possibly due to the varying mean velocity gradients in the jet
core.

From this data we can see that the shock reflection point has
a pronounced effect on the vortex topology and intensity. Prior
acoustic modeling of such jets do not fully account for this mod-
ulationt which may have large effects on their predictive power.
Further work will be completed to reduce the near nozzle scat-
tering due to improper identification of the vorticies’ topologies
in this region.

Conclusions

In this paper we have classified the evolution of the topology of
coherent structures near the nozzle of two under-expanded free
jets using temporal modes captured by dynamic mode decom-
position. The data generated in this analysis will allow for the
extension of current acoustic models of such jets by increasing
the complexity of the modeled coherent structures.
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Figure 3. Iso-surfaces and Iso-contours of planar vorticity in
DMD mode for NPR = 2.2. Iso-surface level is approximately
1/10 of the maximum.

Figure 4. Contour image of planar vorticity in DMD mode for
NPR = 2.2 and a phase of φ = 0. White circles represent the po-
sition of the local maximum for a given vortex structure and the
dashed lines represent the representative size of the structures
where the planar vorticity has dropped to half its maximum.
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Figure 5. Standard deviation of the azimuthal mean axial (top)
and radial (bottom) position of the vortex structures.
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Figure 6. Azimuthal mean minimum (top) and maximum (bot-
tom) diameters of the vortex structures.
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Figure 7. Azimuthal mean rotation of the maximum diameter
axis of the vortex structures.
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Figure 8. Azimuthal mean of the peak planar voriticty of the
vortex structures relative to the maximum in each case.


