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Abstract 

The behaviour of laminar boundary layer flow field over a solid 

surface moving with constant speed plays a significant role in 

several applications of science and technology. This paper 

examines the steady, laminar incompressible boundary-layer flow 

of a viscous electrically conducting fluid past a moving wedge 

with suction (injection) in the presence of an applied magnetic 

field. The set of partial differential equations governing Falkner-

Skan wedge flow is first transformed into ordinary differential 

equation using similarity transformations which is later solved 

numerically, using an implicit finite - difference scheme known 

as the Keller-box method. Numerical results are presented 

graphically to illustrate the influence of magnetic parameter and 

suction/injection on local skin friction coefficient and velocity 

field. Further, it is demonstrated that magnetic field and suction 

plays a noteworthy role in controlling the laminar boundary layer 

separation from the moving wedge surface. 

 

Introduction  

The problem of steady, two-dimensional flow of a viscous 

incompressible fluid past a static wedge shaped bodies 

constitutes one of the classical results of the Prandtl’s boundary 

layer theory. With a similarity transformation the governing 

boundary layer equation is reduced to an ordinary differential 

equation, which is well known as the Falkner-Skan equation [9]. 

The variety of applications and the importance of the Falkner-

Skan equation for the understanding of the physical features of  

laminar boundary layer flow have motivated many researchers 

[2,3,4,6,7,8,10,11,12,13,14], employing various analytical and 

numerical methods acquiescent for different flow situations. 

Nevertheless, studies reported above related to the Falkner-Skan 

boundary layer flow over a fixed wedge placed in a moving fluid. 

Recently, Anuar Ishak et. al [1] have considered the Falkner-

Skan problem for the flow past a moving wedge with the 

application of suction or injection.  

In recent years a great deal of interest has been generated in the 

study of magneto-hydrodynamic (MHD) boundary layer research 

due to its extensive practical applications in technological 

processes; such as MHD power generator designs, design for 

cooling of nuclear reactors, construction of heat exchangers, 

installation of nuclear accelerators, blood flow measurement 

techniques and on the performance of many other systems using 

electrically conducting fluids. Further, it has been long 

recognized that surface mass transfer (suction or injection) 

energetically influences the development of a boundary layer  

 

 

along a surface and, in particular, can prevent or at least delay 

separation of the viscous region [15].  

In view of the above mentioned applications, the present study 

investigates the Falkner-Skan boundary layer flow past a moving 

wedge with an applied magnetic field and suction (injection). 
Using the similarity transformations, the governing equations 

have been transformed into a third order ordinary differential 

equation, which is nonlinear in nature and cannot be solved 

analytically; consequently, Keller box method has been used for 

solving it. 

 

Problem Formulation 

The physical configuration of the present investigation [See 

figure 1] consists of a cartesian coordinate system where x is 

measured along the surface of the wedge and y is normal to it.  

 

              

             Figure 1.  Physical model and coordinate system  

Let us consider the steady, two-dimensional laminar 

incompressible flow of a viscous electrically conducting fluid 

due to a moving wedge with a constant velocity wU  in the 

direction opposite to the mainstream. The moving wedge is 

considered permeable with a lateral mass flux of velocity )(xVw

and the outer flow velocity is )(xU . A uniform magnetic field of 

strength 
0

B  is applied in the direction normal to the wedge 

surface. It is also assumed that the magnetic Reynolds number is 

small and the electric field due to polarization of charges is 

negligible. Under the boundary layer approximations, the 

governing equations for the continuity and momentum transfer 

are, respectively given by 
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where u  and v  are the velocity components in the −x  and −y  

directions of the fluid flow,  respectively; ν  is the kinematic 

viscosity of the fluid, ρσ and
 

are, respectively, electrical 

conductivity and density of the fluid. The physical boundary 

conditions for the problem are given by 
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where wU  and ∞U  are constants characterizing the moving 

wedge velocity and mainstream velocity, respectively. Further, 

L  is a characteristic length and m  is the Falkner-Skan power-

law parameter and x  is measured from the tip of the wedge. The 

subscripts w  and ∞  denotes conditions at wall and infinity, 

respectively. 

 

Similarity Analysis 

We apply the following similarity transformations:
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to equations (1) and (2), we find that continuity equation.(1) is 

identically satisfied and momentum equation (2) is transformed to: 
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Here, ψ
 

and f  are dimensional and dimensionless stream 

functions, respectively; ( )fF ′=  is dimensionless velocity; M

is the dimensionless magnetic parameter. Also, η  is the 

similarity variable and prime ( )'  denotes derivative with respect 

to η .   

From (3) and (6), we have      
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And, in order that similarity solutions of equations (1) and (2) to 

exist, we take 
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where wff =)0(  is a constant. Notice that 0>wV  (i.e., 0<wf ) 

is for mass injection and 0<wV  (i.e., 0>wf ) is for mass 

suction, while 0=wV  (i.e., 0=wf ) is for impermeable surface. 

The transformed boundary conditions are: 

        1)(,)0(,)0( =∞−== FFff w λ                    (9) 

The parameter λ  is defined as 
∞= UUwλ  i.e., λ  is the 

velocity ratio of the surface to the mainstream. Further, 0>λ  

and 0<λ  correspond to moving wedge in opposite and same 

directions to the mainstream, respectively, while 0=λ  

corresponds to a fixed wedge.  

We note that in equation (5), the parameter m  is connected with 

the apex angle ( )2πβ  by the relation )2/( ββ −=m

.)1/(2or += mmβ It is worth mentioning that β  is a measure 

of the pressure gradient dxdp . If β
 
is positive, the pressure 

gradient is negative or favourable, and negative β  denotes an 

unfavourable positive pressure gradient, while 0=β denotes 

the flow past a flat plate. Further, in the present study, the 

numerical computations have been carried out for entire range of 

realistic flow i.e., for the range 5.00 ≤≤ m (corresponds to 
wedge angle ranging from 0o to 60o), as the Falkner-Skan one-

parameter family of solutions of the boundary layer equations has 

proved to be very useful in the interpretation of fluid flows at 

large Reynolds number[16].    

 

 

 



The quantity of physical significance namely the local skin friction 

coefficient fC , defined as 
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the wedge, where µ  is dynamic viscosity and  
ν

Ux
L =Re  is the 

local Reynolds number. 

 

Method of Solution  

The nonlinear partial differential equation (5) subject to boundary 

conditions (9) is solved numerically using an implicit finite-

difference scheme known as Keller-box method, as described in 

Cebeci and Bradshaw[5]. This method is unconditionally stable 

and has a second order convergence. The method has the 

following four main steps: 

(i)   Reduce (5) to a system of first order equations; 

(ii)   Write the difference equations using central differences; 

(iii)   Linearize the resulting algebraic equations by Newton’s                                                           

method: 

(iv)  Write them in matrix- vector form and use the block-   

tridiagonal-elimination technique to solve the linear system. 

 

For the sake of brevity, the details of the complete solution 

procedure are not presented here.  

 

Since the physical domain in this problem is unbounded, whereas 

the computational domain has to be finite, we apply the far field 

boundary conditions for the pseudo-similarity variable η  at a 

finite value denoted by 
max

η . We ran our bulk of computations 

with 
max

η = 6, which is sufficient to achieve asymptotically the 

far field boundary conditions, for all values of the pertinent 

parameters considered. To ensure the convergence of the 

numerical solutions to the exact solution, step size η∆  has been 

optimized. For  achieving  this, the computed values of skin 

friction parameter ( wF ′ ), with a step size η∆  are compared with 

those obtained using reduced step sizes viz., ( )2η∆ , ( )4η∆

and so on and the results presented here independent of 
max

η = 6. 

Further, a uniform step size  01.0=∆η  is found to be 

satisfactory and the requisite solutions are obtained with an error 

tolerance of .10 6−
 

 

 
Result and Discussion 

To validate the numerical method used, the skin friction parameter 

 ( wF ′ ) and velocity field [ )(ηF ] results are compared with those  

of Anur Ishak et.al [1] [See figure 2], for a static wedge ( ),0=λ  
 for non- magnetic case ( )0=M .  
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             Figure 2.  Comparison of skin friction parameter when         

              0.0=M  with Anur Ishak et.al [1]. 
           

We observed that the results obtained for the present study are found 

to in very good agreement with those of [1], correct to four decimal 

places of accuracy. Therefore, the developed code has been used 

with confidence to analyse the problem under consideration in the 

presence of magnetic field parameter ( )0≠M .  
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                  Figure 3. Effect of magnetic field (M) on skin friction 

   

Figure 3 portrays the effect of magnetic parameter (�	 ≠ 0) on 

the skin friction coefficient [ 2/1)(Re LfC ] and on the velocity 

profiles )(F when 50.m = (corresponding  to the larger included 

wedge angle 60o , considered in this study) for both suction          

( 0>wf ) and injection ( 0<wf ). These results are computed 

when the wedge is moving in the direction opposite to that of the 

mainstream ( 0>λ ). It is observed that as magnetic field 

increases, skin friction increases irrespective of whether there is 

injection or suction. This is attributed to the fact that the 

transverse magnetic field has a tendency to create a drag force 

(known as the Lorentz force which opposes the transport 

phenomena), which leads to the deceleration of the flow, 

enhancing the surface shear stress at the wall. Skin friction values 

are higher during suction as compared during the process of 

injection. The dual solutions noticed in the values skin friction 

coefficient (i.e., 2/1)(Re LfC ) for 0=M , just before the separation,  

are imperceptible [figure 3], under the influence of both 

suction/injection and applied magnetic field.  Thus, the magnetic 

field parameter ( )0≠M
 

acts as a remarkable parameter to 

control the surface shear stress.  
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          Figure 4.  Velocity profile for both suction  

                                         and injection when  m = 0.5(600) 

 

The velocity profiles ( )F , shown in figure 4 for 5.0=m  and

5.2=λ , reveal that the momentum boundary layer thickness 

decreases with the increase of  magnetic field parameter ( )0≠M  

for both suction( 0.1=wf ) and injection ( 0.1−=wf ).  Further, 

an increased value of the parameter λ ( )5.2=λ leads to the 

speeding up of the fluid flow inside the laminar boundary layer. 
Also, it is evident that the velocity boundary layer becomes 

thinner for suction and thicker for blowing which in turn, 

confirming the fact  that suction controls the laminar boundary 

layer separation and helps to bring the stability in the flow. 

It is found that when the wedge and the fluid move in the same 

direction ( )0<λ , the skin friction solution is unique for all 

pertinent physical parameters considered in this study. Indeed, 

the said results are not presented in detail here, for the sake of 

brevity. 

 

Concluding remarks 

In this paper, the effects of applied magnetic field and 

suction/injection on the steady flow of a viscous, incompressible 

electrically conducting fluid over a moving wedge have been 

investigated.  

From the present study, following conclusions are drawn: 

(i) Applied magnetic field increases the skin friction throughout   

process of suction as well as injection. 

(ii) Increase in the value moving wedge parameter speeds up the 

fluid flow and, separation does not occur when the wedge and 

the fluid moving in the same direction.  

(iii) Flow velocity increases during suction, in the presence of     

magnetic field, as compared to injection. 

  (iv) Suction plays a key role in the control of laminar boundary    

layer separation and brings stability in the flow.   
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