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Abstract

In this paper, two mounting systems are studied and compared.
The first is a new system in fluid-structure interaction (FSI)
wherein a cantilevered thin flexible plate is aligned with a uni-
form flow with the upstream end of the plate attached to a
spring-mass system: this allows the entire system to oscillate
in a direction perpendicular to that of the flow as a result of the
mounting’s dynamic interaction with the flow-induced oscilla-
tions, or flutter, of the flexible plate; we compare this system to
one where the upstream end is hinged with a rotational spring
at the mount. While the first system is a fundamental problem
in FSI, the study of this variation on classical plate flutter is
also motivated by its potential as an energy-harvesting system
in which the reciprocating motion of the support system would
be tapped for energy production.

In this paper we formulate and deploy a hybrid of theoret-
ical and computational models for the fluid-structure systems
and map out their linear stability characteristics. The compu-
tational model detailed is a fully-implicit solution that is very
robust to spatial and temporal discretisation. Compared to a
fixed cantilever, the introduction of the dynamic support in both
systems is shown to yield lower flutter-onset flow speeds and
for the spring-mounted cantilever a reduction of the order of the
mode that yields the critical flow speed; these effects would be
desirable for energy harvesting applications.

Introduction

Recent practical motivation for the renewed study of can-
tilevered flexible plates in axial flow - a problem first studied
in the modern era by [4] - is the potential to use flow-induced
oscillations, or flutter, of the flexible plate to capture kinetic en-
ergy from the mean flow above a critical flow speed, examples
of these recent studies being [8; 7] wherein the latter reference
utilises an articulated beam. We therefore conceive the spring-
mounted cantilever system illustrated in figure 1(a) wherein the
flow-induced oscillations of the flexible plate drive vertical os-
cillatory motion of a mass-spring support system having its own
dynamics that can clearly be tuned. As shown in the figure, the
extraction of power can be modelled by the inclusion of lin-
ear damping at the support. We compare this shear force de-
vice with that of a bending moment device that is illustrated
in figure 1(b) which comprises a hinged-free plate with a rota-
tional spring. In this paper we therefore develop a theoretical
and computational model of the two-dimensional systems and
map out the dynamics of the remaining parameter space that we
find has the usual non-dimensional control parameters, mass ra-
tio L̄ and flow speed Ū , for a fixed cantilever, in addition to
which there are the natural frequencies of the spring-mass sup-
port systems, ω̄s and Ω̄s for the translational and rotational sys-
tems respectively, where the subscript ‘s’ throughout this paper
signifies a spring-mount property.

To this end, the method of [2] that mixed numerical simu-
lation with eigenvalue analysis is built upon. Thus, ideal two-
dimensional flow is assumed wherein the rotationality of the
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Figure 1: The fluid-structure systems under consideration: (a)
spring-mounted cantilever; (b) hinged-free plate with rotational
spring at the leading edge.

boundary-layers is modelled by vortex elements on the solid-
fluid interface and the imposition of the Kutta condition at the
plate’s trailing edge. The Euler-Bernoulli beam model is used
for the structural dynamics. The latter is appropriate because
it is our overall objective to design and optimise an energy-
harvesting system that operates for low-amplitude deformations
- to reduce material fatigue effects - of the flexible plate by tun-
ing the support system such that the available wind speed co-
incides with the modified critical speed of flutter onset of the
flexible plate. The results presented in this paper demonstrate
that this strategy is practicable.

Theoretical & Computational Modelling

The essential modelling is described in detail in [2] wherein the
system of figure 1(a) was mounted rigidly and symmetrically
within a channel with its walls located at y = ±H; the present
system is obtained by letting H → ∞. For the present paper,
we also neglect the effects of the wake that were modelled in
the precursor paper. The system of figure 1(b) is essentially the
same as the system described in [2] except for the application
of a hinged condition at the leading edge of the plate instead of
a clamp and therefore this section is given to description of the
system in figure 1 (a) which is an extension of our work detailed
in [3].

Simply supported free plates where the support can move
vertically and actuate the system have been analysed in studies
of insect flight and base-excited, fluid-conveying flexible tubes,
for example see [5] and [1] respectively, and constrain that the
leading edge must follow the actuating force. In our study as
well as applying an actuating force due to the reaction of the
spring, we allow that the motion of the leading edge can also
be actuated by the motion of the flexible plate; these constraints
are applied through the inclusion of a shear-force balance condi-
tion at the leading edge that transmits the shear force that drives
the vertical motion of the mounting system whilst also enforc-



ing that neither free nor controlled rotation of the plate about
its leading edge is permitted; this means that the support mech-
anism can provide, without deformation, any level of moment
reaction to the flexible plate at its upstream end.

Referring to [6] the shear force in the flexible plate at the
leading edge is calculated through the following equation of
motion for ηs(t),

B
∂3ηs

∂x3 =−
(
(ρh)∗s

∂2ηs

∂t2 +K∗s ηs

)
, (1)

and where η(x, t) is the flexible-plate vertical-displacement field
and B, ρ and h are respectively the flexural rigidity, material
density and thickness of the plate; Ks is the mount spring-
stiffness. The superscript ∗ denotes units of force per-metre
width of the infinitely-wide mount since this equation repre-
sents a force balance: for example K∗s =

∫
s Ksdx. It can be seen

that the shear condition joins two separate systems: a vertically
oscillating flat plate with a vertically oscillating flexible plate.

This condition is used to solve for the second boundary con-
dition mass point η−2; to solve for the first boundary condition
mass point η−1 we enforce that the clamp extension is flat by
setting that the first mass point in the system is horizontally in
line with the clamp; we therefore have the following equations
for the first boundary condition mass point

η−1 = η1 and η̇−1 = η̇1. (2a, b)
The hinged-free plate does not require the shear condition in
equation (1); the dummy node solutions for a hinged end
for which boundary conditions of zero displacement and zero
bending-moment are enforced are

η−1 = 0 and η−2 =−η1. (3a, b)

We now summarise how the conditions in equations (1), (2)
and (3) for the spring-mass systems are readily incorporated in
the model. The flow field is found using a linearised boundary-
element method (BEM) with quantity N first-order vortex pan-
els on the flexible plate of length L - panel length for a uni-
form discretisation is defined as δx = L/N. Vortex singularities
are used because of the discontinuity of tangential fluid velocity
across the plate that makes it a lifting surface; the distributed lift
drives the motion of the flexible plate. The singularity strengths
are determined by enforcing the no-flux boundary condition at
every panel control point and continuity of the distributed vor-
ticity between adjacent panels in the discretisation. In addition
the boundary condition of zero vorticity at the plate’s trailing
edge is applied, thus enforcing the standard Kutta condition of
zero pressure difference at the trailing edge for linear displace-
ments.

The unsteady Bernoulli equation is utilized to determine the
pressure distribution on the flexible plate. The transmural pres-
sure is then used as the forcing term in the one-dimensional thin
flexible-plate equation couched in finite-difference form. The
motions of the plate and the fluid flow are fully coupled through
deflection, vertical velocity and acceleration of the two media at
their interface. This allows the following single system (matrix)
equation to be written

ρh [I]{η̈} + B [D4]{η} + {K} [I]{η} = 2ρfU2
∞

[
B+

1
]
{η}

+ ρfU∞

[
B−1
]
{η̇} + ρfU∞

[
B+

2
]
{η̇} + ρf [B2]{η̈} . (4)

The pressure perturbation that drives the plate motion appears
on the right-hand side, where ρf and U∞ are the fluid density
and free-stream velocity respectively and [B] are matrices of
singularity influence coefficients: the [B] matrices marked with
a + or − have been suitably rearranged to have the equations
in terms of η instead of linearised panel slope θ and averaged
values of η. The fluid pressure terms that depend on plate dis-
placement, velocity and acceleration in equation (4) can be in-
terpreted as the hydrodynamic stiffness, damping (two terms)

and inertia respectively. The plate pressure terms appear on the
left-hand side: [D4] is a fourth-order spatial-differentiation ma-
trix and [I] is the identity matrix; note that the vector {K} only
has a value at the first mass point. The boundary conditions of
equations (1), (2) and (3) are applied where necessary in the
leading-edge values of [D4], [B+] and [B−].

We take two approaches to the solution of equation (4) rear-
ranged as the system

{η̈}= [E]{η̇}+[F]{η} , (5)

where [E] and [F] are readily inferred from equation (4). In
the first approach we reduce the second-order ordinary differ-
ential equation in η to first-order using the state-space vari-
ables w1(t) = η(t), w2(t) = η̇(t) = ẇ1(t) that therefore allows
η̈(t) = ẇ2(t). Rearranging in companion-matrix form, single-
frequency time-dependent response is assumed at ω which is
a complex eigenvalue of the companion-form. Positive ωI and
ωR respectively represent the oscillatory and amplifying parts
of the response. As the flexible plate is discretised into N mass
points we therefore extract 2N system eigenmodes.

Alternatively, we perform a time-discretisation of the sys-
tem and then numerically time-step the equation using a fully-
implicit method to determine the system response to an applied
form of initial perturbation that we detailed in [3]. In doing
so we are able to study transient behaviour and reveal localised
flow-structure dynamics that when summed contribute to the
system response. The latter method is very robust to spatial and
temporal discretisation and requires only a single or double it-
eration per time step to converge. It is noted that this method is
only applicable to linear deflections of a linearised or non-linear
system.

Results

Our results are presented in non-dimensional form using the
scheme detailed in [2] whereby reference time and length are

tr = (ρh)
5
2 /(ρ2

f B
1
2 ) and Lr = ρh/ρf, (6a, b)

and therefore non-dimensional velocity, time and plate oscilla-
tion frequency are calculated as

Ū =U∞tr/Lr, t̄ = t/tr and ω̄ = ωtr. (7a, b, c)

The non-dimensional streamwise coordinate and length (or
mass ratio) of the flexible plate are defined by

x̄ = x/L and L̄ = L/Lr. (8a, b)

This scheme permits Ū and L̄ to be interpreted respectively as
the physical flow speed and plate length for given fluid and
plate properties. To characterise the mounting systems, we non-
dimensionalise ω̄s and Ω̄s so that

ω̄s = (K∗s /M∗T)
1
2 tr and Ω̄s = (κs/IT)

1
2 tr, (9a, b)

where MT = ρhL is the total plate mass, IT is the total moment
of inertia of the plate about the hinge and κ = K∗s l2 is the ro-
tational spring stiffness, where l is the moment arm shown in
figure 1b. In summary, we find that the critical velocity and fre-
quency of the system Ūc and ω̄c take the functional dependence
on the system’s control parameters f (L̄, ω̄s or Ω̄s).

With respect to the system energy equation, the introduction
of a spring-mount into our numerical simulations causes im-
portant changes in the energy evolution of the system that are
reflected in a modification to the standard formulation. Adapt-
ing the derivation of [2], the plate energy equation is generated
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Figure 2: System dynamics for L̄ = 1 with ω̄s = 1: (a) Varia-
tion of numbered eigenvalues with flow speed (oscillatory and
growth/decay parts represented by broken and full lines respec-
tively) with the real part of Mode 2 that becomes unstable high-
lighted through a thicker line type, (b) time-sequence of instan-
taneous plate position (the thick line being the initial deflection
with early oscillations removed), (c) time series of cumulative
energy transferred from flow to plate in –4– first, –◦– second,
–•– third, and · · · fourth quarters of the plate while —— (thick)
is the total of these; (b) and (c) at Ūc = 2.2.

by multiplying the continuous version of equation (4) by η̇ and
integrating along the length of the flexible surface so that

∂

∂t

(
1
2

ρh
∫ L

0
η̇

2dx︸ ︷︷ ︸
EK

+
1
2

B
∫ L

0
η

2
,xxdx+

1
2

K∗s η
2
s︸ ︷︷ ︸

ES

)

=
∫ L

0
(−δp) η̇dx + Bηs,xxxη̇s. (10)

The kinetic and strain energies of the plate are EK and ES re-
spectively. Equation (10) shows that the plate energy either
grows or decays in time depending upon the rate of work done
by the pressure loading, (−δp). It is clear that for neutrally
stable low-amplitude oscillations at the critical flutter speed the
left-hand side of equation (10) is zero (no energy growth) and
thus is exactly equal to the energy-transfer rate - Ẇ , the first
term on the right-hand side - from the flow to the flexible plate
via the pressure field over the entire flexible plate plus the sec-
ond term on the right-hand side.

This latter term is the work done on the spring mount to en-
force that the clamp stays horizontal; ηs,xxx is calculated from
the boundary condition in equation (1). Clearly the extra term
means that (some) energy is wasted when the support is con-
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Figure 3: System dynamics for L̄ = 1 with Ω̄s = 1: (b) and (c)
at Ūc = 4.3; Other descriptions as figure 2.

strained to move vertically as a clamp, whereas when there is a
torsional spring on a hinged support none is wasted as this term
is zero.

The non-dimensional form of Ẇ we plot in our results is
W̄ (tp) that represents the sum of pressure work done up to time
tp - therefore corresponding to the current value of total plate
energy ET = ES +EK - divided by the initial strain energy of
the plate deformed in the second eigenmode.

Figure 2 shows the results at L̄ = 1 with ω̄s = 1. Figure
2a shows the variation of system eigenvalues with applied flow
speed. The broken lines denote the oscillatory (imaginary) part
of the eigenvalue, ωI, while the solid lines show the associated
growth/decay (real) part of the eigenvalue, ωR. The modes are
numbered in the plots following their order of increasing fre-
quency at zero flow speed. Instability sets in at the lowest flow
speed (the critical flow speed, Ūc) for which ωR becomes posi-
tive, i.e. that at which the ωR locus crosses the horizontal axis
to move into the upper positive quadrant of the plot. In figure
2a it is seen that single-mode flutter of the second system mode
- highlighted by a thicker line type - is the critical instability at
a non-dimensional flow speed Ū = Ūc = 2.2.

This instability has a strong mode 1 content that can be seen
in the critical mode shape at this flow speed, figure 2b show-
ing a numerical simulation of the critical mode evolution. The
simulation was started by releasing the plate from an applied
deformation - the thick black line - in the shape of the second
in-vacuo mode. The critical mode then evolves from the initial
excitation.

The plate-energy record for the simulation of figure 2b is
shown in figure 2c: the thick line represents the total energy
transferred from the flow to the plate exactly at the critical flow
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Ūc

0.0

0.5

1.0

1.5

2.0

2.5

3.0
!̄
�

1
s

0.
25 0.
5

0.
75

(a)

smf-2(1)

smf-2

1 2 3 4 5 6 7

Ūc
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Figure 4: System dynamics for L̄ = 1: Plots of ω̄−1
s against Ūc

for (a) spring-mounted cantilever, and (b) hinged-free plate with
rotational spring at leading edge; dashed lines denote Ūc for the
fixed cantilever case from [2]; dotted lines are ω̄R values and
are therefore contours of instability intensity.

speed where neutral stability occurs, while the other four lines
show the contributions to this total from each of the four quar-
ters of the plate. After transients due to mode adjustment have
died away, the time-averaged value of the total energy is con-
stant. However, it is also seen that the energy exchanges be-
tween plate and flow are spatially dependent. Figure 2c shows
that the destabilising work done by and on the fluid is in the
first quarter of the plate where the greatest energy transfer is
occurring in the system.

In comparison, the hinged-free system for Ω̄s = 1 shown in
figure 3 is very similar to the equivalent fixed-cantilever result in
[2] for H̄ = 1 (for which the channel walls were shown to exert
negligible effect): figure 3b shows that the critical mode shape
loses most of its first-order mode content and becomes more
second-mode dominated, the reason for this being the absence
of the stronger real component of the first mode just below the
x-axis, as shown in figure 3a. Also, figure 3c shows that the
location of the destabilising fluid-work done on the plate moves
to the third quarter of the plate.

Figure 4 shows how the critical speeds of instability onset
vary with the spring-mounting characterised by ω̄s and Ω̄s for
L̄ = 1. The vertical dashed lines show Ūc values for the fixed
cantilever case. We remark that the detailed results of figures
2 and 3 appear as the data point for ω̄−1

s = Ω̄−1
s = 1 in figures

4a and 4b respectively. Figure 4 shows that the introduction of
a spring-mounting destabilises the system - critical flow speeds
are lower - than for the fixed cantilever. The onset flow speeds
are seen to approach those of the fixed cantilever as ω̄s or Ω̄s
is increased (ω̄−1

s or Ω̄−1
s is decreased) although a very small

numerical difference between the new mobile and previous [2]
fixed cantilever models appears: this is most probably due to ill-
conditioning of the system stiffness matrix as the value of the
spring-support coefficient is made extremely large.

In both cases the system is nearly always destabilised by
single-mode flutter of mode 2 as typified in [2]: however, in
figure 4a we note that at ω̄−1

s = 0.25 there is a change in the in-
stability for the spring-mounted cantilever as the critical mode
content switches to be mode 1 dominated with its different route
to instability as seen in figure 2. The frequencies of the critical

mode - not shown here - approach those of the fixed system as
the spring stiffness is increased. The introduction of a spring-
mounting decreases the oscillation frequencies of the critical
mode in proportion with the reduction in critical velocity as
compared with the fixed-cantilever for both cases.

Comparing instability intensity between the systems, we see
that although the spring-mounted cantilever has a lower critical
velocity for most values of mount spring-stiffness, the hinged-
free system has a more severe instability for those values. This
means that the hinged-free system is more generally practica-
ble for energy-harvesting applications as it does not require a
specialised spring-mount set-up to take advantage of a smaller
band of parameters where the system is sufficiently unstable for
energy-harvesting purposes.

Conclusions

We have developed models for predicting the two-dimensional
linear-stability characteristics of spring-mounted flexible plate
in a uniform flow. The basic stability characteristics of the sys-
tem have been investigated for cases that, for a rigid mounting,
would succumb to single-mode flutter. It has been shown that
the introduction of a spring-mounting is destabilising in that it
leads to lower values of Ūc. As the natural frequency of the
mounting system is reduced, both systems asymptote to a fixed
value of Ūc associated with rigid-body motion: in effect the
flexible plate becomes very stiff as compared with the mounting
system. For the spring-mounted cantilever a value is reached for
which Ūc is a local minimum: this minimum exists because the
critical-mode content evolves from one of a higher to a lower
order that can then become more stable with further decreases
to the mounting stiffness. These stability findings augur well
for the introduction of means to extract power from the recipro-
cating motion - linear or rotational - of the support. The present
methods could then be used to determine optimal system pa-
rameters for energy harvesting.
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