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Abstract

The near wake flow structures of a steady, transversely-rotat
ing sphere at Reynolds numb&e= 300, and high rotational
rates,Q* € [1.50,3.00], whereQ* is the maximum sphere sur-
face velocity normalised by the free stream velocity, are nu
merically investigated. Within this range of rotationates

the near wake flow structures undergo multiple flow transgio
The near wake flow structures lose planar symmetry for thie firs
time for Q* = 2.00 to 225, but planar symmetry is restored for
Q* =250 to 275. AtQ* = 3.00, the high sphere surface ve-
locity leads to spiralling motions along the rotation axifiese
spiralling motions react with the uniform free stream tlestd-

ing to small scale energetic flow structures on the advancing
side of the sphere (where the sphere surface velocity issigpo
to the free stream velocity). Consequently, the flow stnastu
depart from planar symmetry. The presence of small scale vor
tices dramatically increases the oscillating frequenchefhy-
drodynamic forces acting on the sphere. The increase inrsphe
rotation rate Q*, also results in better pressure recovery on the
lee side of the sphere. As a result, the time-averaged defg co
ficient decreases monotonically fol50 < Q* < 3.00.

Introduction

For many decades researchers have sought to understand the
flow structures which occur when a fluid passes over a uni-
formly rotating solid sphere. Sphere rotation was shown to
have an impact on the forces the sphere experiences as well
as enhancing turbulence in the surrounding flow [1]. This
information is of interest because it provides a basic model
for the forces which are present in particle laden flows. Ru-
binow and Keller [12], using the Stokes and Oseen expan-
sion of the Navier—Stokes equations, provided one of the
early contributions of lift force_, in the limit of very low
Reynolds numbefRe= pU.d/p < 0.1) and low rotation rate

(Q* = wd/2U» < 0.10), wherep and p respectively refer to
fluid density and dynamic viscosity. stands for free stream
velocity, d is the sphere diameter angrepresents the angular
velocity of the sphere. Above this range of Reynolds number
and rotation rate, numerous experimental studies had ksen c
ried out [2, 8, 10, 13, 14]. An excellent review of the litena

by Loth [7] has identified the global trends of lift coefficten

C_, across different conditions.

The use of numerical simulations at the beginning of 90s has
provided an insight into the flow structures of a rotatingesph
which have been lacking from most of the experimental studie
However, apart from the numerical study carried out by ¥ou

al. [15] atRe< 68.4 andQ* < 5, numerical studies at moderate
Reynolds number@Re< 300) are limited to low rotational rate
(Q* <1.2) only [3, 6, 11]. The aim of this study is to expand
the understanding of the flow to conditions at higher rotatio
rates, in the range @* = 1.50-300.

Problem Definition and Solution Procedures

y

Figure 1: The spherical and the Cartesian coordinate sgstem
The free stream flow is aligned with tteaxis and sphere is
rotating in thex-direction.

Figure 1 presents the basic geometry of the problem where
a solid sphere is shown at the origin of the spherical coordi-
nate systen(r,0,¢). The free stream flow is aligned in the
z-direction and the sphere is constrained to rotate inxhe
direction. The fluid motion of a transversely rotating sgher
is described by the incompressible Navier—Stokes equation
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Equations (1) and (2) are solved using a well-developed
Fourier—Chebyshev collocation method [3, 11] in a spatial d
main being described in spherical coordinates. The num-
bers of collocation points in each direction g ,ng,ny) =
(121,100,64). To improve resolution near the boundary layer,
the collocation points are clustered towards the sphefacair

in ther-direction, and near the shoulder of the sphere irBthe
direction where the flow separates and shear layer locates. T
temporal resolution is chosen to Ag* = AtUy, /d = 5 x 10~%

[3]. A Dirichlet boundary conditioru= (0,0,1) is applied at
the inlet, a Neumann boundary conditid®,/on = 0 at the out-

let, and a no-slip and no penetration boundary conditiohet t
sphere surface. The sphere surface velocity is prescrijped b
equation (2.5) of Giacobellet al. [3]. Details of the numerical
algorithm and velocity boundary condition can be referred t
Poonet al. [11].

Features of the Flow Field

Classification of Flow Regimes

Figure 2 presents the summary of flow structures, identifged u
ing Jeong and Hussain [4b vortex identification method, for
Re= 300 andQ* = 1.50-300. The value ofA, used in this
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Figure 2: Representations of different flow regimes for agversely rotating sphere at moderBeand selected*. The planar
shear layer instability regime lies withid* = 0.80—150; the double period planar shear layer instability reggfeund atQ* = 1.75,
2.50 and 275; the double period asymmetric shear layer instabiligyme is in betwee2* = 2.00-225 while the asymmetric high

frequency shear layer instability @ = 3.00.

study ish, = —0.008. In general, betwee®* = 1.50-300 the
flow can be classified into four different regimes. One of ¢hes
regimes, named ‘shear layer instability’ for = 1.50, shares
behaviour with a previously identified classification by Gia
bello et al. [3] and Kim [6] atRe= 300, Q* = 0.80-120, but

the remaining three are to the authors knowledge new regimes

as yet unreported in the literature. The flow fr@ = 0.80—
1.50 is briefly discussed to provide context but the main focus
is on the data produced in the present study.

For rotations in the rang@* = 0.80 through to 150, the vor-
tices are formed due to the shearing action of two flows with
different bulk velocities. At the boundary between the two
flow streams, a shearing motion occurs leading to a Kelvin—
Helmholtz type instability. This shear force generategiwity

in the flow which is then enhanced as flow convect downstream.
Under the present conditions this leads to the periodic &ion

and release of symmetric vortices at the end of the shear, laye
which have a similar appearance to vortex shedding strestur
(see [5]) but are formed in a very different way. The freqyenc
of the vortex formation due to shear layer instability is elep
dent on the velocity gradients between different streandsiran
this study, the frequency of vortices in this regime will lee r
ferred to as the ‘baseline’ frequency. The first data poirihe
present study a@@* = 1.50 lies within this regime.

At a rotation rate of2* = 1.75 the flow is also characterised by
the formation of vortices via the shear layer instabilityame
anism. However, the difference at this rotation rate is tet f
that vortex formation occurs at a frequency which is approxi
mately half the aforementioned ‘baseline’ frequency. Ashsu
this flow has been termed ‘double period shear layer instabil
ity’. This drop in the frequency of rotation is thought to be
caused by changes in the arrangement of shear layers atthe re
of the sphere. The main impact of such a change in the vortices
frequency is the fact that the oscillation frequency of therb-
dynamic forces will now be half of what it was previously. As
with all previous regimes, the flow is however still planar.

In many ways the flow field at rotations & = 2.00 and 225

is very similar to the flow aQ* = 1.75. Due to shear layer
instabilities in the flow there are regular vortices releasem

the shear layer, the frequency of which is a continuatiomfro
the previous regime. The difference now is that the flow is no

longer completely planar. Instead there is a small amount of
out-of-plane motion in the flow as indicated by thez)-plane
view of the 3-dimensional streamlines patterr{¥t= 2.00 in
figure 3. As such, this flow regime has been termed ‘double
period asymmetric shear layer instability’.

Once the sphere rotation react@s= 2.50 the flow has once
more reverted to the ‘double period planar shear layerliilsta
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Figure 3: (x,2)-plane view of the 3-dimensional streamlines
pattern atQ* = 2.00. Red ellipse highlights the out-of-plane
fluid motion in thex-direction.

(b) X

Figure 4: 3-dimensional streamlines patteriat= 3.00: (a)
iso-metric view andb) (x,z)-plane view.



ity regime’ and this set of flow conditions persists up to arot
tion of Q* = 2.75. At a rotation ofQ* = 3.00 there is a sharp
change in the flow behaviour and a transition to what has been
termed the ‘asymmetric high frequency shear layer instgbil
regime occurs. At this rotation rate, the iso-surfaces effiw
structures not only become asymmetric, they also appeag to b
highly irregular in shape, unlike the asymmetric cases rvieske

at Q* = 2.00 and 225. One of the primary reasons for the
highly irregular flow structures &* = 3.00 can be attributed to
the circulations appearing on shoulder of the sphere albag t
rotation axis as shown in figure 4. These circulations, which
have not been observed for lower rotation rates, react \Wwih t
upstream flow and results in small scale energetic flow on the
advancing side (negatiweaxis) of the sphere. The presence of
the small scale energetic flow leads to a strong departure fro
planar symmetry and thus substantially incre@3gs

Phase Behaviour
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Figure 5: Phase diagrams for a transversely rotating spfere
(Cuy,Cux) and(b) (CL,Cp).

One of the distinguishing features of certain regimes idiedt

in this study is the fact that the flow within them is not planar
symmetric. This was noted as a qualitative difference betwe
certain regimes but in order to look more closely at thisifeat
itis desirable to consider the difference in quantitatesrs. In
order to do so, phase diagrarf@y,Cx) and(C_,Cp) can be
constructed which show the magnitude of the different ferce
the sphere experiences, as illustrated in figure 5.

In figure 5a) the dynamic relationship between the forcexin
andy is investigated. As is suggested by the name, the ‘planar
symmetric shear layer instability’ regime has no comporént
force in thex-direction and hence the phase curv@at= 1.50
appears as a vertical line lying along a&is = 0. The length of
this line along th€€, y-axis indicates the amplitude of oscillatory
forces in lift signal.

Likewise the flows which lie within the ‘double period planar
shear layer instability’ regime are represented by vertinas

on the phase diagram alo@gy = 0 as would be expected from
a planar system. In an earlier section, it is mentioned that t
flow enters the ‘double period asymmetric shear layer irstab
ity’ regime atQ* = 2.00 and 225. However, as evident in the
phase diagranfCry,Cix), CLx remains 0 for this flow regime
with C.y keeps oscillating up and down alo@yy-axis. The
reason forC y = 0 may be attributed to the small component
of flow moving out-of-plane as highlighted by the red elligize
figure 3. As the movement of the out-of-plane flow is relagivel
small and is roughly at 3 diameters downstream, its effect on
the hydrodynamic force is insignificant and ttC remains O.

The most interesting representation of forces iat= 3.00
where there are considerable force components in botix the
andy-directions. These forces change energetically and napidl
so that when the forces are plotted for small number of cycles
the locus has a sharp ‘jagged’ appearance. Plotting thesorc
for a large number of cycles reveals a locus with a full ciacul
appearance. Rapid, sometimes sharp changes in the forfee coe
ficients suggest that the total force behaviour is the rexfudt
number of small out-of-sync flow events. The rapid change is a
result of the shifting dominance of certain small scale esl@is
explored in figure 4.

In figure §b) the dynamic relationship between the lift and drag
forces is explored. Overall, behaviour is similar acro$shed
different regimes types. The most interesting feature ftois
image is the variation in the mean drag force as the rotaditen r

is increased. There is a monotonic decrease in drag with in-
creasing rotation rate and the magnitude of the changeridisig
cant; a total change of aroundl@ across the range of rotations.
Inspection of the pressure distribution around the spheoe/s

that this change in drag force is due to shifting pressureidis
butions at the rear of the sphere. As rotation rate is inekas
the low pressure wake becomes gradually more deflected in the
negativey-direction due to the momentum imparted on the flow
at the sphere surface. The pressure at the region diredtigde
the sphere therefore gradually recovers, leading to dseriea

the pressure drag. Viscous drag changes by only a small amoun
and hence the total drag is decreased.

Strouhal Number

In figure 6 the Strouhal numbe8t= fd/U, is plotted against
the non-dimensional rotation rate, whdrés frequency of vor-
tex formation calculated from the power spectrunCpj. As
would be expected from the preceding discussion, the frezyue
of vortex formation approximately halves as the regimetshif
from simple ‘shear layer instability’ to the ‘double periedear
layer instability’ regime. This is shown by an approximatéh

ing of the Strouhal number between the two rotations. From
Q* = 1.75 through tdQ* = 2.75 the frequency of vortex forma-
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Figure 6: Strouhal number as a function of rotation rategnot
discontinuousy-axis).

tion is approximately constant, resulting in a constano@tal
number of approximately.2 across this range. At the rotation
of Q* = 3.00 a power spectrum of the lift coefficient reveals
two major frequency contributions to the signal, with onange
much greater in frequency than the other. The lower frequenc
corresponds to the large scale vortex formation eventshwdie
cur at a frequency comparable to the vortex formation of othe
rotation rates. The high frequency component is thoughote ¢
respond to the oscillations seen in the lift force as welltes t
transverse force in thedirection and itis seen that these events
occur mainly at a frequency which is approximately twenwg-fi
times greater.

Conclusions

In the present study, the flow of an incompressible fluid over a
rotating sphere has been investigated numerically. Bagldin

the results of co-workers, the study has focused on flows with
a Reynolds number dke= 300 and non dimensional rotations
in the rangeQ* = 1.50-300. It has been found that within
this range of conditions, there are four different flow reggm
that the fluid adopts depending on the rotation rate. Fora rot
tion rate ofQ* = 1.50 the flow is described as vortex formation
via a ‘shear layer instability’ mechanism. As rotation rate
increased, a new flow regime develops(dt= 1.75 which is
termed in this paper the ‘double period planar shear layer in
stability’ regime. This flow regime is in many ways similar to
the previous regime, with the exception that the frequerfcy o
vortex formation is now halved. This regime is noted to oc-
cur not only at a rotation o2* = 1.75 but also at rotations of
Q* =250 andQ* = 2.75 and the vortices produced are planar
and periodic in time. Bisecting this ‘double period’ regimse
flow condition known in this paper as the ‘double period asym-
metric shear layer instability’ regime. Sharing many feasu

in common with the flow type that surrounds it, the difference
with this regime is the fact that the flow is no longer planaral
flow with a sphere rotating at a rotation rate@f = 3.00 mul-
tiple flow phenomena are observed. Termed in this paper the
‘high frequency asymmetric shear layer instability’ regirthe
flow under these conditions is highly energetic. A significan

transverse force in the-direction exists which tends to oscil-
late the sphere sideways at a high frequency. The sphere also
has an high frequency oscillation in the lift coefficientrag
which enhances variation caused by large scale vortex forma
tion events.
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