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Abstract

The near wake flow structures of a steady, transversely rotat-
ing sphere at Reynolds number,Re= 300, and high rotational
rates,Ω∗ ∈ [1.50,3.00], whereΩ∗ is the maximum sphere sur-
face velocity normalised by the free stream velocity, are nu-
merically investigated. Within this range of rotational rates,
the near wake flow structures undergo multiple flow transitions.
The near wake flow structures lose planar symmetry for the first
time for Ω∗ = 2.00 to 2.25, but planar symmetry is restored for
Ω∗ = 2.50 to 2.75. At Ω∗ = 3.00, the high sphere surface ve-
locity leads to spiralling motions along the rotation axis.These
spiralling motions react with the uniform free stream that lead-
ing to small scale energetic flow structures on the advancing
side of the sphere (where the sphere surface velocity is opposite
to the free stream velocity). Consequently, the flow structures
depart from planar symmetry. The presence of small scale vor-
tices dramatically increases the oscillating frequency ofthe hy-
drodynamic forces acting on the sphere. The increase in sphere
rotation rate,Ω∗, also results in better pressure recovery on the
lee side of the sphere. As a result, the time-averaged drag coef-
ficient decreases monotonically for 1.50< Ω∗ ≤ 3.00.

Introduction

For many decades researchers have sought to understand the
flow structures which occur when a fluid passes over a uni-
formly rotating solid sphere. Sphere rotation was shown to
have an impact on the forces the sphere experiences as well
as enhancing turbulence in the surrounding flow [1]. This
information is of interest because it provides a basic model
for the forces which are present in particle laden flows. Ru-
binow and Keller [12], using the Stokes and Oseen expan-
sion of the Navier–Stokes equations, provided one of the
early contributions of lift force,FL, in the limit of very low
Reynolds number(Re= ρU∞d/µ≤ 0.1) and low rotation rate
(Ω∗ = ωd/2U∞ ≤ 0.10), whereρ and µ respectively refer to
fluid density and dynamic viscosity,U∞ stands for free stream
velocity, d is the sphere diameter andω represents the angular
velocity of the sphere. Above this range of Reynolds number
and rotation rate, numerous experimental studies had been car-
ried out [2, 8, 10, 13, 14]. An excellent review of the literature
by Loth [7] has identified the global trends of lift coefficients,
CL, across different conditions.

The use of numerical simulations at the beginning of 90s has
provided an insight into the flow structures of a rotating sphere
which have been lacking from most of the experimental studies.
However, apart from the numerical study carried out by Youet
al. [15] atRe< 68.4 andΩ∗ < 5, numerical studies at moderate
Reynolds numbers(Re≤ 300) are limited to low rotational rate
(Ω∗ ≤ 1.2) only [3, 6, 11]. The aim of this study is to expand
the understanding of the flow to conditions at higher rotation
rates, in the range ofΩ∗ = 1.50–3.00.

Problem Definition and Solution Procedures
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Figure 1: The spherical and the Cartesian coordinate systems.
The free stream flow is aligned with thez-axis and sphere is
rotating in thex-direction.

Figure 1 presents the basic geometry of the problem where
a solid sphere is shown at the origin of the spherical coordi-
nate system(r,θ,φ). The free stream flow is aligned in the
z-direction and the sphere is constrained to rotate in thex-
direction. The fluid motion of a transversely rotating sphere
is described by the incompressible Navier–Stokes equations,

dũ
dt

+ ũ ·∇ũ=−∇P+
1
Re

∇2ũ, (1)

∇ · ũ= 0. (2)

Equations (1) and (2) are solved using a well-developed
Fourier–Chebyshev collocation method [3, 11] in a spatial do-
main being described in spherical coordinates. The num-
bers of collocation points in each direction are

(

nr ,nθ,nφ
)

=
(121,100,64). To improve resolution near the boundary layer,
the collocation points are clustered towards the sphere surface
in the r-direction, and near the shoulder of the sphere in theθ-
direction where the flow separates and shear layer locates. The
temporal resolution is chosen to be∆t∗ = ∆tU∞/d = 5×10−4

[3]. A Dirichlet boundary condition ˜u = (0,0,1) is applied at
the inlet, a Neumann boundary condition,∂P/∂n= 0 at the out-
let, and a no-slip and no penetration boundary condition at the
sphere surface. The sphere surface velocity is prescribed by
equation (2.5) of Giacobelloet al. [3]. Details of the numerical
algorithm and velocity boundary condition can be referred to
Poonet al. [11].

Features of the Flow Field

Classification of Flow Regimes

Figure 2 presents the summary of flow structures, identified us-
ing Jeong and Hussain [4]λ2 vortex identification method, for
Re= 300 andΩ∗ = 1.50–3.00. The value ofλ2 used in this



Figure 2: Representations of different flow regimes for a transversely rotating sphere at moderateReand selectedΩ∗. The planar
shear layer instability regime lies withinΩ∗ = 0.80–1.50; the double period planar shear layer instability regimeis found atΩ∗ = 1.75,
2.50 and 2.75; the double period asymmetric shear layer instability regime is in betweenΩ∗ = 2.00–2.25 while the asymmetric high
frequency shear layer instability atΩ∗ = 3.00.

study isλ2 =−0.008. In general, betweenΩ∗ = 1.50–3.00 the
flow can be classified into four different regimes. One of these
regimes, named ‘shear layer instability’ forΩ∗ = 1.50, shares
behaviour with a previously identified classification by Giaco-
bello et al. [3] and Kim [6] atRe= 300,Ω∗ = 0.80–1.20, but
the remaining three are to the authors knowledge new regimes
as yet unreported in the literature. The flow fromΩ∗ = 0.80–
1.50 is briefly discussed to provide context but the main focus
is on the data produced in the present study.

For rotations in the rangeΩ∗ = 0.80 through to 1.50, the vor-
tices are formed due to the shearing action of two flows with
different bulk velocities. At the boundary between the two
flow streams, a shearing motion occurs leading to a Kelvin–
Helmholtz type instability. This shear force generates vorticity
in the flow which is then enhanced as flow convect downstream.
Under the present conditions this leads to the periodic formation
and release of symmetric vortices at the end of the shear layer,
which have a similar appearance to vortex shedding structures
(see [5]) but are formed in a very different way. The frequency
of the vortex formation due to shear layer instability is depen-
dent on the velocity gradients between different streams and in
this study, the frequency of vortices in this regime will be re-
ferred to as the ‘baseline’ frequency. The first data point inthe
present study atΩ∗ = 1.50 lies within this regime.

At a rotation rate ofΩ∗ = 1.75 the flow is also characterised by
the formation of vortices via the shear layer instability mech-
anism. However, the difference at this rotation rate is the fact
that vortex formation occurs at a frequency which is approxi-
mately half the aforementioned ‘baseline’ frequency. As such,
this flow has been termed ‘double period shear layer instabil-
ity’. This drop in the frequency of rotation is thought to be
caused by changes in the arrangement of shear layers at the rear
of the sphere. The main impact of such a change in the vortices
frequency is the fact that the oscillation frequency of the hydro-
dynamic forces will now be half of what it was previously. As
with all previous regimes, the flow is however still planar.

In many ways the flow field at rotations ofΩ∗ = 2.00 and 2.25
is very similar to the flow atΩ∗ = 1.75. Due to shear layer
instabilities in the flow there are regular vortices released from
the shear layer, the frequency of which is a continuation from
the previous regime. The difference now is that the flow is no

longer completely planar. Instead there is a small amount of
out-of-plane motion in the flow as indicated by the(x,z)-plane
view of the 3-dimensional streamlines pattern atΩ∗ = 2.00 in
figure 3. As such, this flow regime has been termed ‘double
period asymmetric shear layer instability’.

Once the sphere rotation reachesΩ∗ = 2.50 the flow has once
more reverted to the ‘double period planar shear layer instabil-

Figure 3: (x,z)-plane view of the 3-dimensional streamlines
pattern atΩ∗ = 2.00. Red ellipse highlights the out-of-plane
fluid motion in thex-direction.

Figure 4: 3-dimensional streamlines pattern atΩ∗ = 3.00: (a)
iso-metric view and(b) (x,z)-plane view.



ity regime’ and this set of flow conditions persists up to a rota-
tion of Ω∗ = 2.75. At a rotation ofΩ∗ = 3.00 there is a sharp
change in the flow behaviour and a transition to what has been
termed the ‘asymmetric high frequency shear layer instability’
regime occurs. At this rotation rate, the iso-surfaces of the flow
structures not only become asymmetric, they also appear to be
highly irregular in shape, unlike the asymmetric cases observed
at Ω∗ = 2.00 and 2.25. One of the primary reasons for the
highly irregular flow structures atΩ∗ = 3.00 can be attributed to
the circulations appearing on shoulder of the sphere along the
rotation axis as shown in figure 4. These circulations, which
have not been observed for lower rotation rates, react with the
upstream flow and results in small scale energetic flow on the
advancing side (negativey-axis) of the sphere. The presence of
the small scale energetic flow leads to a strong departure from
planar symmetry and thus substantially increasesCLx.

Phase Behaviour
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Figure 5: Phase diagrams for a transversely rotating sphere: (a)
(

CLy,CLx
)

and(b) (CL,CD).

One of the distinguishing features of certain regimes identified

in this study is the fact that the flow within them is not planar
symmetric. This was noted as a qualitative difference between
certain regimes but in order to look more closely at this feature,
it is desirable to consider the difference in quantitative terms. In
order to do so, phase diagrams

(

CLy,CLx
)

and(CL,CD) can be
constructed which show the magnitude of the different forces
the sphere experiences, as illustrated in figure 5.

In figure 5(a) the dynamic relationship between the force inx
andy is investigated. As is suggested by the name, the ‘planar
symmetric shear layer instability’ regime has no componentof
force in thex-direction and hence the phase curve atΩ∗ = 1.50
appears as a vertical line lying along axisCLx = 0. The length of
this line along theCLy-axis indicates the amplitude of oscillatory
forces in lift signal.

Likewise the flows which lie within the ‘double period planar
shear layer instability’ regime are represented by vertical lines
on the phase diagram alongCLx = 0 as would be expected from
a planar system. In an earlier section, it is mentioned that the
flow enters the ‘double period asymmetric shear layer instabil-
ity’ regime atΩ∗ = 2.00 and 2.25. However, as evident in the
phase diagram

(

CLy,CLx
)

, CLx remains 0 for this flow regime
with CLy keeps oscillating up and down alongCLy-axis. The
reason forCLx = 0 may be attributed to the small component
of flow moving out-of-plane as highlighted by the red ellipsein
figure 3. As the movement of the out-of-plane flow is relatively
small and is roughly at 3 diameters downstream, its effect on
the hydrodynamic force is insignificant and thusCLx remains 0.

The most interesting representation of forces is atΩ∗ = 3.00
where there are considerable force components in both thex
andy-directions. These forces change energetically and rapidly
so that when the forces are plotted for small number of cycles
the locus has a sharp ‘jagged’ appearance. Plotting the forces
for a large number of cycles reveals a locus with a full circular
appearance. Rapid, sometimes sharp changes in the force coef-
ficients suggest that the total force behaviour is the resultof a
number of small out-of-sync flow events. The rapid change is a
result of the shifting dominance of certain small scale eddies as
explored in figure 4.

In figure 5(b) the dynamic relationship between the lift and drag
forces is explored. Overall, behaviour is similar across all the
different regimes types. The most interesting feature fromthis
image is the variation in the mean drag force as the rotation rate
is increased. There is a monotonic decrease in drag with in-
creasing rotation rate and the magnitude of the change is signifi-
cant; a total change of around 0.18 across the range of rotations.
Inspection of the pressure distribution around the sphere shows
that this change in drag force is due to shifting pressure distri-
butions at the rear of the sphere. As rotation rate is increased,
the low pressure wake becomes gradually more deflected in the
negativey-direction due to the momentum imparted on the flow
at the sphere surface. The pressure at the region directly behind
the sphere therefore gradually recovers, leading to decrease in
the pressure drag. Viscous drag changes by only a small amount
and hence the total drag is decreased.

Strouhal Number

In figure 6 the Strouhal number,St= f d/U∞, is plotted against
the non-dimensional rotation rate, wheref is frequency of vor-
tex formation calculated from the power spectrum ofCLy. As
would be expected from the preceding discussion, the frequency
of vortex formation approximately halves as the regime shifts
from simple ‘shear layer instability’ to the ‘double periodshear
layer instability’ regime. This is shown by an approximate halv-
ing of the Strouhal number between the two rotations. From
Ω∗ = 1.75 through toΩ∗ = 2.75 the frequency of vortex forma-
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Figure 6: Strouhal number as a function of rotation rate (note
discontinuousy-axis).

tion is approximately constant, resulting in a constant Strouhal
number of approximately 0.22 across this range. At the rotation
of Ω∗ = 3.00 a power spectrum of the lift coefficient reveals
two major frequency contributions to the signal, with one being
much greater in frequency than the other. The lower frequency
corresponds to the large scale vortex formation events which oc-
cur at a frequency comparable to the vortex formation of other
rotation rates. The high frequency component is thought to cor-
respond to the oscillations seen in the lift force as well as the
transverse force in thex-direction and it is seen that these events
occur mainly at a frequency which is approximately twenty-five
times greater.

Conclusions

In the present study, the flow of an incompressible fluid over a
rotating sphere has been investigated numerically. Building on
the results of co-workers, the study has focused on flows with
a Reynolds number ofRe= 300 and non dimensional rotations
in the rangeΩ∗ = 1.50–3.00. It has been found that within
this range of conditions, there are four different flow regimes
that the fluid adopts depending on the rotation rate. For a rota-
tion rate ofΩ∗ = 1.50 the flow is described as vortex formation
via a ‘shear layer instability’ mechanism. As rotation rateis
increased, a new flow regime develops atΩ∗ = 1.75 which is
termed in this paper the ‘double period planar shear layer in-
stability’ regime. This flow regime is in many ways similar to
the previous regime, with the exception that the frequency of
vortex formation is now halved. This regime is noted to oc-
cur not only at a rotation ofΩ∗ = 1.75 but also at rotations of
Ω∗ = 2.50 andΩ∗ = 2.75 and the vortices produced are planar
and periodic in time. Bisecting this ‘double period’ regimeis a
flow condition known in this paper as the ‘double period asym-
metric shear layer instability’ regime. Sharing many features
in common with the flow type that surrounds it, the difference
with this regime is the fact that the flow is no longer planar. In a
flow with a sphere rotating at a rotation rate ofΩ∗ = 3.00 mul-
tiple flow phenomena are observed. Termed in this paper the
‘high frequency asymmetric shear layer instability’ regime, the
flow under these conditions is highly energetic. A significant

transverse force in thex-direction exists which tends to oscil-
late the sphere sideways at a high frequency. The sphere also
has an high frequency oscillation in the lift coefficient signal
which enhances variation caused by large scale vortex forma-
tion events.
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