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Abstract

Dramatic amplification of rotational motion can occur in vor-
tices of very different scales, which can be observed in a bathtub
or the atmosphere. In these vortices, the flow converges towards
the axis of rotation and the intensity of rotational motion in-
creases due to conservation of the angular momentum. Destruc-
tive nature of hurricanes and tornadoes serves as an illustration
of the possible magnitudes of this amplification. We briefly re-
view the theory of compensating regime that can be expected
to characterise properties of vortices of different scales and in-
vestigate whether available experimental and observational data
(both historic and recent) tend to support this theory.

Introduction

Vortical flows have been repeatedly investigated in the litera-
ture and many publications are dedicated to this topic. We first
mention Theodore Fujita, who in his classical work on vortices
in planetary atmospheres [10] introduced a unified treatment of
the vortical motion of different scales starting from a lab vortex
(that is referred to here as a bathtub vortex) and finishing with
the largest vortices in the atmosphere. Among many publica-
tions, the works on the strong vortex approximation [5, 21, 23],
which introduce asymptotic analysis of vortical flows with dom-
inant influence of vorticity, are relevant to the present analysis.
Among conventional vortices, such as vortices introduced by
Rott [28], Long [22] and Burgers [3], the scheme of the Burgers
vortex, which combines axisymmetric rotation with centripetal
flow and axial stretch above the ground, is most related to our
consideration. The present work gives a very brief introduction
into the theory of compensating regime [14, 15, 16, 17] and con-
siders if this theory is applicable to vortices of different scales
and supported by available experimental and observational data.

Compensating regime in vortical flows

Consider incompressible axisymmetric flow with vorticity. The
rotational component is characterised by the circulation γ = vθr
and the axial vorticity ωz, which are linked by the equation
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The flow image on the r-z plane depends on the value of tan-
gential vorticity
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whose production is controlled by the dimensionless parameter
K [14, 15, 16, 17]
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γωz
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∗
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which we call the rotational vorticity parameter. The value v∗
represents the characteristic value of translational velocity (with
components vz and vr) with the axial velocity component vz
being a common choice for v∗. If K is small, no significant
tangential vorticity can be present in the flow while large val-
ues of K indicate significant production of tangential vorticity.
The parameter K is related to most common parameters, which

characterise the relative intensity of rotation in the flow, by the
equation

K2 =
S

Ro
(4)

That is the rotational vorticity parameter represents a ratio of
the swirl ratio S and the inverse Rossby number Ro, which are
defined by

S =
γ

v∗r
, Ro =

v∗
ωzr

(5)

Vortical flows with intensive rotation are commonly charac-
terised by existence of an extended region where the flow is
directed towards the center and rotation is significantly ampli-
fied. This region is limited by the core of the flow at small
radii (say r = r0) and by the outer conditions at large radii (say
r = r1) while covering the range of radii r0 ≤ r ≤ r1 chang-
ing at least one order of magnitude r1/r0 & 10. A smaller ra-
dius range would not be sufficient for a significant amplification
of the rotation. The theory of compensating regime states that
the parameter K should remain approximately the same through
the amplification region. Indeed, excessively small values of K
would make ωθ negligibly small, which, as shown below, re-
sults in increase in K. Excessively large values of K are also not
possible since the amount of ωθ produced in the flow is limited
by the flow geometry — very large K are inconsistent with abil-
ity of the flow to comply with various boundary conditions and
likely to cause bifurcations and/or growth of instabilities The
compensating regime is based on assumption K ∼ 1 where we
constrain the order of magnitude of the parameter K rather than
its exact value.

For the sake of simplicity, we assume the stream function ψ

can be approximated in the region of interest by the power law
expression ψ∼ rαz — this equation is consistent with both the
strong vortex approximation and with potential flow. Note that
potential flow (i.e. a flow with negligible tangential vorticity
ωθ) corresponds to α = 2. The main parameters of the flow are
given by the equations

ψ = c0rαz, vr =−c0rα−1, vz = αc0rα−2z,

ωz =
−c1

rvr
=

c1

c0rα
, γ(r) = γ0 + γ1(r) (6)

where
γ1(r) =

c1

c0(2−α)
r2−α

and c0 and c1 are constants. The parameter K is given by the
equation

K2 ∼ γ

r3α−4 (7)

which has two obvious limits that can be characterised by sim-
ple power laws

K2 ∼
{ γ0

r3α−4 γ0 � γ1
1

r4α−6 γ0 � γ1

}
(8)

If K is small then ωθ is not generated in sufficient quantities to
affect the flow. In this case, the flow image on the r-z plane is



potential (i.e. ωθ ≈ 0) and this corresponds to α = 2. In this
case K increases towards the center until it reaches values suf-
ficiently large to generate tangential vorticity ωθ and reduce α.
The requirement of K ∼ 1 does not generally result in an exact
power law but, according to equation (8), α = α∗ should lay in
the range

4
3
≤ α

∗ ≤ 3
2

(9)

where α∗ is called the compensating value of the exponent α.
As discussed in the previous publications [14, 15, 16, 17], the
flow compensates for over- and under-production of tangential
vorticity by adjusting α to its compensating value α∗, which is
given by equation (9) and ensures that the order of the rotational
vorticity parameter K remains consistent with the flow in the
amplification region.

Figure 1: Streamlines in a bathtub flow with progressively
strong vorticity obtained in simulations [16]. Coordinates nor-
mal (top) and logarithmic (bottom); different line types show
simulations with different values of K, : — K ≈ 0.31, - - - -
K ≈ 0.0045, -.-.- K = 0; symbols: + (α = 4/3), o (α = 2)

Numerical simulations

The 4/3 and 3/2 power laws are devised for effectively inviscid
flows and may disappear in the viscous core under dominant
influence of viscosity. Detecting this power law in numerical
simulations requires obtaining stable solutions under conditions
of low viscosity. Klimenko [16] has performed inviscid calcu-
lations of an axisymmetric vortical bathtub-like flow and found
that the region of the 4/3 power law appears in the flow and
grows in size as the parameter K∗ increases. Although the ob-
tained numerical solutions of the inviscid vorticity equations are
stable, special measures were required to ensure convergence of
the solution. The calculations were performed for the case of
γ0 � γ1 and α∗ = 4/3 was expected and observed in calcula-
tions as shown in Figure 1.

Figure 2: Axial vorticity vs radius in bathtub flow [29]. The
solid curves represent ωz for drains with diameters 20, 30, 40
and 50 mm (from the bottom curve to the top curve). The
dashed lines show the exponents of α = 2, 3/2 and 4/3 in
ωz ∼ 1/rα.

Bathtub vortex

The power laws can also be detected in experiments on vortical
flows in a bathtub. Shiraishi and Sato [29] measured experi-
mental profiles of vθ = γ/r for vortical flow in a bathtub. As ex-
pected vθ does not have any substantial dependence on z and de-
creases rapidly with increasing r. The curves vθ(r) in Ref.[29]
are smooth and allow for numerical differentiation by polyno-
mial approximations of the curves. The axial vorticity profiles
are presented in Figure 2. The lines of ωz∼ 1/rα are also shown
in the figure for α = 4/3, 3/2 and 2. The vorticity profile in the
case of the smallest drain hole (20mm) and the weakest rotation
in the flow appears to be less regular (the overall slope of the
curve in this case seems to be closer to α = 2) while the near
axis asymptotes of ωz(r) for other cases (the drains of 30, 40,
and 50 mm) indicate α varying between 3/2 and 4/3.

Figure 3: Length versus Pe number. Experiments [4] open sym-
bols (below the dotted line) – no rotation; solid symbols (above
the dotted line) – with rotation. Dashed lines – theory [18, 19]
α = 4/3, 3/2 and 2 (from top to bottom); d0 is the diameter of
the fuel source.

Firewhirls

Firewhirls are fires characterised by the presence of a strong ro-
tation in the flow, high burning rate and elongated flame [30].
Klimenko and Williams [18, 19] have recently extended analy-
sis of Kuwana et. al. [20] and introduced a theory, which deter-
mines the flame length and uses velocity approximations based



on the compensating regime. While Refs.[18, 19] take into ac-
count presence of the viscous core and discusses influence of the
density change, Figure 3 presents a simplified treatment linked
to the characteristic values of α used in the rest of the paper:
2, 3/2 and 4/3. The value α = 2 is associated with irrotational
flows, while the compensating values 3/2 and 4/3 are applicable
to the case when rotation in the flow is strong. The experimen-
tal points of Chuah et al. [4] shown in Figure 3 are in a good
agreement with the theoretical prediction.

Figure 4: Axial vorticity in tornadoes: top - tornado 4 of the
McLean storm [8], bottom - estimates of typical parameters of
supercell tornadoes from various sources [17]. The dashed lines
show the exponents of α = 2, 3/2 and 4/3.

Tornadoes

Although tornadoes generate faster winds than hurricanes, they
are more susceptible to atmospheric fluctuations. Even large
supercell tornadoes are significantly affected by atmospheric ir-
regularities. There are very few direct measurements of wind
profiles in tornadoes and measurements may suffer from under-
resolving the core of tornadoes. Wurman and Gill [31] con-
ducted high resolution measurements of a F4 tornado formed in
a supercell storm near Dimmitt (Texas) in 1995 and reported
β = 0.6± 0.1 in vθ ∼ 1/rβ (γ0 is small in the reported pro-
file) that corresponds to α = β + 1 = 1.6± 0.1. The value of
α∗ = 3/2 is within this range. Figure 4 (bottom) shows the
range of typical tornado parameters taken from various sources
and summarised in Ref. [17]. These estimates are consistent
with the compensating values of the exponent α.

Dowell and Bluestein[8] reported characteristics of several tor-
nadoes that appeared in the 1995 McLean (Texas) storm based
on Doppler radar measurements. Among these tornadoes, tor-
nado 4, which reached F4-F5 on the Fujita scale, was the
strongest, largest and most stable tornado. Unlike in many other
tornadoes disturbed by atmospheric irregularities in surround-

ing flows, the axial vorticity in tornado 4 was fairly uniform
up to AGL (above ground level) of more than 4 km and it per-
sisted for more than an hour. The results are plotted in Figure 4
(top). The circles have been determined from the contour plot
of the constant values of vorticity by calculating the average
effective radius of each contour line. The error bars show the
standard deviations in evaluating these averages. Both values
match reasonably well; the increasing difference at r > 1km is
explained by the difficulty of evaluating ωz(r) from γ(r) due to
an increasingly non-axisymmetric structure of the flow appear-
ing at these radii. The exponents of the compensating regime
produce a good match to the measured vorticity within the range
of 400m< r < 1.5km.

Hurricanes

Hurricanes, which are also called typhoons or tropical cyclones,
are by far the largest and most powerful vortices in atmosphere.
Influence of hurricane winds might be detected as far as 1000km
from the hurricane eye. The fact that the exponent of β = 0.5
in vθ = γ/r ∼ 1/rβ (which corresponds to α = β + 1 = 3/2)
represents a reasonable empirical approximation for the mea-
surements of the rotational velocities in hurricanes was known
for a long time and is mentioned in many publications (see
[27, 11, 7]). Riehl [27] noted that assuming both the mo-
ment of the tangential component of the surface stress rσθ

and the drag coefficient CD to be independent of r is sufficient
(but not necessary) for α to be 1.5. Pearce [26] put forward
arguments supporting this assumption. The data reported by
Hawkins and Rubsam [12] and by Palmen and Riehl [25] indi-
cate, however, that CD ∼ 1/rζ with ζ ranging between 0.4 and
0.7 while Palmen and Riehl [25] determined that, on average,
rσθ ∼ 1/r0.6. In his thermodynamic theory of steady tropical
cyclones, Emanuel [6] demonstrated that α ≈ 1.5 just outside
the radius of maximal winds is consistent with typical tempera-
ture changes on the sea surface and in the tropopause.

Figure 5: Axial vorticity distributions for hurricanes x – Hilda
[12] and o – Inez [13]. The dashed lines show the exponents of
α = 2, 3/2 and 4/3.

Comparison of the power laws of the compensating regime with
observations using axial vorticity is more direct than that us-
ing tangential velocity. Hawkins & Rubsam [12] and Hawkins
& Imbembo [13] reported radial vorticity distributions and
other characteristics for two hurricanes, Hilda (1964) and Inez
(1966). Hurricane Inez was a relatively small but very intense
hurricane while the parameters of hurricane Hilda were more or
less typical for large category 4 cyclones. The vorticity profiles
reported for Inez and Hilda also do not show any significant
dependence on z at lower altitudes. Axial vorticity profiles in
Hilda has an irregularity at the altitudes above several kilome-



ters while ωz in Inez remains more regular. The dependence of
ωz on r in hurricanes Hilda and Inez is shown in Figure 5. The
slope of the curves ωz ∼ 1/rα exhibits some variations but is
generally consistent with the lines of α = 3/2 and α = 4/3.

The most comprehensive analysis of the exponent in vortical
flows by Mallen et. al. [24] reported averages for axisymmet-
ric tangential velocity and axial vorticity distribution in tropical
storms involving 251 different cases (while distinguishing pre-
hurricanes (<30m/s), minor hurricanes (30-50 m/s) and major
hurricanes (>50 m/s) by their maximal tangential winds). The
best approximation for the exponent is α = 1.37 was determined
as the average over all storms with standard deviation of 0.14
while the averages of 1.31 and 1.48 were suggested for the
weakest and the strongest storms. These values are quite close
to 4/3 and 3/2 advocated here.

Experimental [24] Theoretical [14] – [17]
hurricane α n Case α

pre-hurricane 1.31 73 dominant core 4/3≈ 1.33
minor 1.35 106 dominant core 4/3≈ 1.33
major 1.48 72 calm core 3/2≈ 1.5
total average 1.37 251 average 1.38

Table 1. Measured exponent α averaged over n hurricanes
versus predictions by the compensating regime theory.

Conclusion

The theory of compensating regime predicts that, for a devel-
oped vortex with a strong vorticity, the value of exponent α tend
to fall below α = 2. If vorticity is sufficiently strong, α is ex-
pected to reach the compensating values of the exponent, which
lay in the rage 4/3≤ α≤ 4/3. Experimental and observational
results, taken across a very wide range of phenomena of differ-
ent scales, tend to support these predictions. We note however,
that the exponents are subject to significant variations and no-
ticeable deviations from any fixed value of the exponent — the
vortices are strongly affected by many factors including vari-
able atmospheric conditions. There is, however, a case, which
allows for a more accurate comparison: average value of the
exponents evaluated over many hurricanes indicate a very good
quantitative agreement with the theory.

References

[1] Bluestein, H.B. and Golden, J.H. Review of tornado ob-
servations, Tornado: its structure, dynamics, prediction
and hazards. Geophysical Monograph 79, Amer. Geo-
phys. Union, pp. 319–352, 1993.

[2] Brooks, H.E., Doswell, C.A. and Davies-Jones, R. Envi-
ronmental helocity and the maintenance and evolution of
low-level mesocyclones, Tornado: its structure, dynam-
ics, prediction and hazards. Geophysical Monograph 79,
Amer. Geophys. Union, pp. 97–104, 1993.

[3] Burgers, J. M. A mathematical model illustrating the the-
ory of turbulence. Adv. Appl. Mech. 11, 475–488, 1967

[4] Chuah, K. H., Kuwana,K., Saito, K., and Williams,F. A.
Inclined fire whirls. Proc. Combust. Inst, 32, 2417–2424,
2011.

[5] Einstein, H.A. and Li, H. Steady vortex flow in a real fluid,
Proc. Heat Trans. and Fluid Mech. Inst. 4, 33–42, 1951.

[6] Emanuel K. A. An air-sea interaction theory for tropical
cyclones. Part I: steady state maintenance, J. Atmos. Sci.
43, 2044–2061, 1986.

[7] Emanuel, K. Tropical cyclones, Annu. Rev. Earth Planet.
Sci. 31, 75–104, 2003.

[8] Dowell, D.C. and Bluestein, H.B. The 8 june 1995
McLean, Texas, storm., Month. Weath. Rev. 130, 2626–
2670, 2002.

[9] Dowling, T.E. Dynamics of Jovian Atmospheres Annu.
Rev. Fluid Mech. 27, 293–334. 1995

[10] Fujita, T.T. Tornadoes and downbursts in the context of
generalized planetary scales, J. Atmos. Sci. 38, 1511–
1534, 1981.

[11] Gray, W.M. Feasibility of beneficial hurricane modifica-
tion by carbon dust seeding, Atmospheric Science Paper
No 196 Dept. of Atm. Sci. Colorado St. Univ., 1973.

[12] Hawkins, H.F. and Rubsam, D.T. Hurricane Hilda, 1964,
Month. Weath. Rev. 96, 617–636, 1968.

[13] Hawkins, H.F. and Imbembo, S.M. The structure of
small intense hurricane – Inez 1966, Month. Weath. Rev.
104, 418–422, 1973.

[14] Klimenko, A.Y. A small disturbance in the strong vortex
flow, Physics of Fluids 13, 1815–1818, 2001.

[15] Klimenko, A.Y. Near-axis asimptote of the bathtub-type
inviscid vortical flows, Mech. Res. Comm. 28, 207–212,
2001.

[16] Klimenko, A.Y. Moderately strong vorticity in a bathtub-
type flow, Theoretical and Computational Fluid Mechan-
ics 14, 143–257, 2001.

[17] Klimenko, A.Y. Analysis of compensating regime in in-
tensification region of strong vortices, WSEAS Transac-
tions on Fluid Mechanics 1,No 12, 1009–10016, 2006.

[18] Klimenko, A.Y. and Williams F.A. On the flame length in
firewhirls, Australian Combustion Symposium, Proceed-
ings, ACS001, 2011.

[19] Klimenko, A.Y. and Williams F.A. On the flame length in
firewhirls with strong vorticity, Combustion and Flame,
to appear, 2012.

[20] Kuwana,K., Morishita,S., Dobashi,R., Chuah,K.H. and
Saito,K. The burning rates effect on the flame length of
weak fire whirls, Proc.Combust. Inst., 33,2425 – 2432,
2011.

[21] Lewellen, W.S. A solution for three-dimensional vortex
flows with strong circulation, J.Fluid Mech. 14, 420–432,
1962.

[22] Long. R. R. A vortex in an infinite viscous fluid. J.Fluid
Mech., 11, 611–623, 1961.

[23] Lundgren, T.S. The vortical flow above the drain-hole in a
rotating vessel, J.Fluid Mech. 155, 381–412, 1985.

[24] Mallen, K. J., Montgomery, M. T. and Wang, B. Reexam-
ining the near-core radial structure of the tropical cyclone
primary circulation: Implications for vortex resiliency. J.
Atmos. Sci. 62, 408–425. 2005

[25] Palmen, E. and Riehl, H. Budget of angular momentum
and energy in tropical cyclones J. Meteor. 15, 150–159,
1957

[26] Pearce, R. A critical review of progress in tropical cyclone
physics including experimentation with numerical mod-
els Proc. ICSU/WMO Int. Symposium on Tropical Cyclone
Disasters, Beijing, China, ICSU/WMO, 45–49, 1992

[27] Riehl, H. Some relationships between wind and thermal
structure in steady state hurricanes, J. Atmos. Sci. 20, 276–
287, 1963

[28] Rott,N. On the viscous core of a line vortex J. Appl Math.
Phys. (ZAMP), 9b, 543-553, 1958

[29] Shiraishi, M. and Sato, T. Switching phenomenon of a
bathtub vortex, J. Appl. Mech. 61, 850–854, 1994.

[30] Williams, F. A. Urban and wildland fire phenomenology,
Prog. Energy Combust. Sci., 8, 317–354, 1982.

[31] Wurman, J. and Gill, S. Finescale radar observations of
the Dimmitt, Texas (2 June 1995) tornado, Month. Weath.
Rev. 128, 2135–2164, 2000.


