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Abstract

Numerical differencing schemes are subject to dispersive and
dissipative errors, which in one dimension are functions of
wavenumber. When these schemes are applied in two or three
dimensions, the errors become functions of both wavenumber
and the direction of wave propagation. In this paper spectral
analysis was used to analyse the magnitude and direction in
error of the group velocity of vorticity-entropy and acoustic
waves in the solution of the linearised Euler equations in a two-
dimensional Cartesian space. The anisotropy in these errors for
three schemes were studied as a function of the wavenumber,
wave direction, mean flow direction and mean flow Mach num-
ber. It was found that the traditional measure of error - the ratio
of the magnitudes of the numerical to real group velocities -
does not accurately capture the total error for waves which are
traveling in an oblique direction to the mean flow. Therefore
a second measure of a scheme’s error that better represents the
total error in the scheme is presented. Numerical experiments
were run to provide confirmation of the developed theory.

Introduction

With increased interest in the computation of turbulence and
with the advent of computational aeroacoustics (CAA), meth-
ods were developed to increase the resolution of finite differ-
ence schemes as required for these applications. Formal trun-
cation error provides some indication of the accuracy of a nu-
merical scheme; however, far more information can be obtained
from a spectral analysis in which one can identify the resolv-
able wavenumbers. The use of spectral analysis to assess the
resolution of numerical schemes is well established ([7] and
[15]). However, the overwhelming majority of analyses on
the resolution and accuracy of these schemes have been per-
formed in only one dimension. In some cases schemes were
tested for their performance in two dimensions [4, 5, 1, 2, 3],
whilst others have anisotropy reduction as a primary motivation
[6, 8, 9, 11, 13, 16]. In most cases the analysis of anisotropyin a
scheme’s error is portrayed by a polar plot of the ratio of numer-
ical phase speed to exact phase speed for a range of wavenum-
bers. Implicit in such an analysis is the assumption that the
waves are aligned with the direction of propagation. This as-
sumption is restrictive and does not apply in general applica-
tions. [14] showed how the physical propagation of the waves
moves according to group velocity and [12, p.558] asserts that
phase velocity is ’totally irrelevant’ with regards to the error of
wave propagation. Therefore this paper focuses on the use of
group velocity to explain the phenomena observed. For the pur-
poses of exploring the anisotropy of finite difference schemes
the sixth order central difference scheme (CDS6) is used as an
example. The definition of the CDS6 scheme and its equivalent
wavenumber as a function of actual wavenumber is commonly
found in literature (e.g. [8]) and will not be explicitly defined
here. This paper provides an overview of the work found in

[10].

Definition of Error Measures

From the linear evolution form of the Euler equations
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whereρ is the fluid density,ui the velocity components,p the
pressure,a the speed of sound, a prime denotes fluctuating
quantities and an overbar denotes mean quantities. By apply-
ing the continuous and discrete Fourier-Laplace transformto
equation (1) we determine the analytical and numerical group
velocity (for non diffusive schemes) respectively as
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where ¯ui is the mean flow velocity vector,ki is the wavenumber
vector,k⋆i is the equivalent wavenumber vector,∆i is the grid
spacing vector andα is a selector variable. Whenα = 0 these
equations represent the group velocity for the vorticity-entropy
waves and whenα =−1 orα = 1 these equations represent the
group velocity for the upstream and downstream acoustic waves
respectively. The mean speed of sound and density are assumed
to be 1 therefore ¯ui is also the Mach vector. The numerical
group velocity was derived under the assumption that discreti-
sation is applied only in the spatial domain. As can be seen the
numerical group velocity exhibits a strong dependence not only
on the equivalent wavenumber but its derivative with respect
to the exact wavenumber. We may expect that the group ve-
locity may be zero or propagate in the oblique directions when
∂(k⋆1∆1)/∂k1 ≤ 0 and/or∂(k⋆2∆2)/∂k2 ≤ 0.
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Figure 1: (a)(i) Ratio of modulus; (a)(ii) Absolute phase error; (b)(i-ii) Relative error of the numerical downstream acoustic wave
propagation for the CDS6 scheme; (a)(i-ii) and (b)(i) show values forδθ = 0◦; (b)(ii) show values forδθ = 90◦. Taken from [10].

The ratio of group velocity magnitudes is often used in literature
to determine the dispersion error and is related to the classical
measure of relative error in modulus or group velocity magni-
tudes, which would be equal to 1−U⋆

g /Ug. In this case the
dispersion error in the given scheme decreases asU⋆

g /Ug ap-
proaches 1. However for multidimensional analysis the error
in modulus do not account for the difference in the group ve-
locity direction or error in phase. The ratio of group velocity
magnitudes and absolute error in phase are defined respectively
as
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and
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. (8)

whereR−90◦ is the 90◦ counter-clockwise rotation matrix. Fig-
ure 1(a)(i-ii) represent these respective errors for the down-
stream acoustic waves (α = 1) for any given relative wavenum-
ber vector. As with the classical anisotropy error plots thewave
content is aligned with the mean velocity direction which has a
magnitude ofŪ = 0.5.

As expected due to the large errors in phase at higher wavenum-
bers the total error in the schemes is not accurately described by
the ratio of group velocity magnitudes. To determine an appro-
priate error measure we must consider the error in modulus and
phase to include the multidimensional effects. It is therefore
more appropriate, in comparing numerical schemes, to use the
relative magnitude of the error vector,uge = u⋆

g −ug,
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This metric better captures the difference between the realand
numerical group velocity vectors as it includes both the error in
modulus and error in phase. It more accurately describes the
effectiveness of a scheme for the multidimensional Euler equa-
tions in a single variable. Unlike the prior approach the dis-
persion error in the given scheme decreases asUge approaches
0. Figures 1(b)(i-ii) represent this error for the upstreamacous-
tic waves when the velocity direction is aligned (δθ = 0◦) and
perpendicular (δθ = 0◦) to the wavenumber content direction.

Comparison of Error Measures

From this analysis we found that the classical error analysis un-
der predicts the total error present when the wavenumber con-
tent is not aligned with the mean velocity direction. However
the maximum error occurs when the wavenumber content and
velocity direction are aligned along the principle axes andthere-
fore reduces to the classical 1D analysis. For the acoustic wave

propagation this may be seen in figure 2 which plots the max-
imum value of 1−U⋆

g /Ug andUge of a wave traveling in any
direction for the CDS6 scheme and the multi-dimensionally op-
timized scheme (MDS6) found in [8].
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Figure 2: Comparison of the maximum error for a wave with
any direction (θw) with respect to the difference between the
mean flow velocity direction and wave direction (δθ). (a) to (c)
show results for waves with wavenumbers ofπ/16, π/8, and
π/4, respectively. Solid lines represent the CDS6 scheme and
dashed lines represent the MDS6 scheme. Dark lines represent
the multidimensional error and the grey lines represent thestan-
dard error.Ū = 1.0. Taken from [10].

As expected these cases show that the multidimensional error is
greater than the standard error due to the inclusion of the error
in phase. However when the wave direction is aligned with the
direction of mean flow the maximum of both errors are equiva-
lent. This is due to the maximum error in these cases occurring
along thek1∆1 andk2∆2 axes where the solution reduces to a
1D problem and the error in phase is zero. Both errors decrease
as the mean flow velocity diverges from the wavenumber con-
tent direction and at faster rates for higher mean flow velocities.



A more in depth analysis of the relationship between theu j and

k j∆ j vector and∂ki

(

k⋆j ∆ j

)

matrix is required to understand the

cause of such results.

Numerical Experiment

This section compares the propagation of an initial Gaussian
profile using the CDS6 numerical methods analysed under the
two-dimensional linearised Euler equations in Cartesian coordi-
nates. They are compared to the predictions made using group
velocity as described in equation (6). For all numerical results
the fourth-order Runge-Kutta time discretisation scheme was
used with a maximum CourantFriedrichsLewy number of ap-
proximately 0.01. The grid spacing was set at∆1 = ∆2 = 0.036
with a time step interval of∆t = 0.001. The spatial domain was
−18≤ x1 ≤ 18 and−18≤ x2 ≤ 18, which provided sufficient
clearance between the solution and boundaries. All resultsare
given for a time oft = 4 s. The mean density, pressure and ve-
locity for all simulations werēρ = 1, p̄ = 1 andŪ = 0.5 in a
direction 30◦ counter-clockwise from the x-axis.

A Gaussian profile profile theoretically contains all frequencies
such that the component waves are expected to propagate in all
directions about the mean flow velocity. The initial perturbation
was defined as

U ′ =




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0.0
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e−g(x2

1+x2
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A value of g = 275 was chosen to reduce aliasing by setting
the relative amplitude of the component waves with the highest
wavenumber (Nyquist limit) is approximately 10% of the base
amplitude. These results show the spread of dispersion errors
for the entire wavenumber range of the mesh for each of the
given schemes.

Figure 3 shows the results for the CDS6 scheme. Sub-figure (a)
is a plot of the unfiltered density field and the range of analyt-
ical positions, represented by the dotted lines, of the vorticity-
entropy waves with the wavenumber content aligned along the
range of−180◦ < δθ < 180◦ at selected wavenumber magni-
tudes. The extent of the waves show the spread of possible
propagation as predicted by the spectral analysis. Sub-figures
(c) to (d) are plots of the Gaussian bandpass filtered density
field defined as

Û ′
Filtered(k1,k2) = Û ′ (k1,k2)e

−(∆k−(∆k)c )2

2σ2 (11)

where∆k =

√

(∆1k1)
2+(∆2k2)

2 is the magnitude of the rela-
tive wavenumber components,σ = π/20 and(∆k)c is the center
wavenumber of the filter. The dotted lines represent the analyt-
ical position of the accoustic waves with a wavenumber content
of (∆k)c along the range of−180◦ < δθ < 180◦. As may be
seen the analytical theory developed compares very well with
the numerical results even though the spread of waves exhibits
complicated patterns at larger wavenumbers. Waves with larger
deviation from the real propagation position correspond tothose
with higher wavenumbers.

Conclusions

A spectral analysis of the 2D linearized Euler equations has
been completed in order to predict the error in magnitude and
direction of the group velocity of vorticity-entropy and acous-
tic waves. A different measure of the group velocity error —
the relative magnitude of the error vector between the numer-
ical and real group velocities — was used to account for the

directional error of wave propagation. The comparison shows
that the traditional measure of error — the ratio of the magni-
tudes of the numerical to real group velocities — is lower for
flow velocity directions oblique to that of the wave propagation
direction. Such behavior in numerical wave propagation cannot
be reflected in the typical anisotropy diagrams seen in current
literature and is important with regards to the understanding of
dispersion error in multidimensional finite difference solutions
of the Euler and Navier-Stokes equations.
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Figure 3: Plot of the numerical results of the initial Gaussian profile solution to the linearised Euler equations using the CDS6 scheme.
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