Secondary flow in stratified open channel flow on a bend

N. Williamson\textsuperscript{1}, S. E. Norris\textsuperscript{2}, S. W. Armfield\textsuperscript{1} and M. P. Kirkpatrick\textsuperscript{1}

\textsuperscript{1}School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006, Australia
\textsuperscript{2}Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand

Abstract

This work examines the effect of stratification on open channel flow around bends. We use direct numerical simulation of fully turbulent, two-layer stratified flow, in an idealised open channel with rectangular cross-section and a 120 degree bend, with a radius to channel breadth ratio of 1.5. The bulk Richardson number for the flow is 2.4. We additionally perform a non-stratified DNS simulation of the same flow.

Our stratified flow results compare well with published field studies in estuaries. The near bed measurements provided by our DNS simulations demonstrate a quite novel observation, that even in stratified conditions, the shear stress in the channel base is inwards directed, the same as for the non-stratified flows. Previous field studies of estuaries have not obtained such near bed measurements. This has important implications for near bed transport of sediment and cross stream circulation.

We show that stratification can introduce strong variation in vertical shear magnitude and orientation across the mixing layer. At the bottom and at the top of the mixing layer, the vertical shear is directed towards the outer side wall. In the center of the mixing layer it is oriented towards the inner wall.

Introduction

In rivers and estuaries, the flow on bends produces important mixing and sediment entrainment behaviour that is critical to overall understanding of the river or estuary system [1]. Stable density stratification, which could be produced by either surface heating or saline ocean or groundwater intrusions, can significantly modify these behaviours [2, 3, 4, 5]. At present many aspects of these flows are not well understood and limit the applicability of flow modelling parameters such as entrainment rate or eddy viscosity.

On a channel bend, the secondary flow generated by a depth varying centrifugal force, is relatively well understood in non-stratified flow. Field studies in estuaries have shown that the flow behaviour in stratified conditions can be far more complex [2, 4, 5]. The secondary flow acts to raise the lower dense fluid towards the inside of the bend. The tilted density interface is then subjected to a baroclinic restoring (outwards directed) force, which is also depth varying. In a recent estuarine field study, it was shown that the interaction of the secondary circulation and the restoring baroclinic force produces a complex three-layer circulation pattern under conditions of strong stratification [5]. The stream-wise variation in the relative strength of these forces results in a downstream adjustment of the flow which is not well understood [2, 3, 4, 5].

Recent small scale numerical simulations of isothermal open channel flows have been successfully used as canonical models of river systems [6, 7]. In the present study we use direct numerical simulations of small scale open channel flow on a bend, with and without an imposed density stratification, to examine how cross-stream circulation develops around a channel bend. We examine flow where the bend is sharp and the stratification has a sharp two-layer density profile. In Australian river systems, such a flow might be expected where saline water is purged from a hyper-saline deep river pool into the main channel [8, 9, 10]. The mixing behaviour of these intrusions and their persistence downstream are of interest to environmental managers of these river systems.

Governing Equations

Results for two direct numerical simulations of open channel flow on a bend are presented in this study. The first is a density stratified flow and the second is an isothermal flow in which there is no scalar transport. The geometry of the simulation domain is an open rectangular channel with a short initial straight section of length $L/D = 1$, followed by a 120° bend and then a second straight section of length $L/D = 2$. The channel width is $W/D = 3$ and the bend radius to width ratio is $R/W = 1.5$ where the radius is taken from the center of the channel ($W/2$).

In these simulations we solve the three dimensional Navier–Stokes equations for an incompressible fluid with the Oberbeck-Boussinesq approximation for buoyancy. These equations for the conservation of mass, momentum and temperature $\phi$ can be written as

\begin{equation}
\nabla \cdot \mathbf{u} = 0, \quad (1)
\end{equation}

\begin{equation}
\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{uu}) = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} - \mathbf{Ri} \mathbf{\phi}, \quad (2)
\end{equation}

and

\begin{equation}
\frac{\partial \mathbf{\phi}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{\phi}) = \frac{1}{RePr} \nabla^2 \mathbf{\phi}, \quad (3)
\end{equation}

respectively. The governing non-dimensional parameters are the bulk Reynolds number $Re = U_b D / \nu = 7500$ and for the stratified flow, the Prandtl number $Pr = \nu / \alpha = 1.5$, bulk Richardson number $\mathbf{Ri} = g D U_b^2 / \sigma = 2.4$ where $\sigma = \Delta \Phi \beta g$ is the reduced gravity. The gravitational acceleration vector (aligned with the negative $y$ direction) is given by $g$ and $\beta$ is the coefficient of thermal expansion. $\nu$ and $\alpha$ are the kinematic viscosity and scalar diffusivity of the fluid. The equations are made non-dimensional by the bulk channel velocity $U_b$, the channel depth $D$ and the temperature difference at the inlet $\Delta \Phi_0 = \Phi_H - \Phi_C$, where $\Phi_C$ and $\Phi_H$ are the temperatures of the lower cold layer and upper hot layer respectively. The resulting non-dimensional velocity, length, time, pressure and temperature are denoted by lower–case and given as $u = U / U_b$, $x = X / D$, $t = T U_b / D$, $p = P / \rho U_b^2$ and $\phi = (\Phi - \Phi_H) / (\Phi_C - \Phi_H)$. Dimensional values are upper–case.

The equations are solved using ALE, an unstructured finite volume solver described in detail by [11]. The code uses a cell-centred co-located storage arrangement for flow variables, with cell-face velocities calculated using the Rhie-Chow momentum interpolation. We use a structured orthogonal mesh. The spatial derivatives are discretised using second order central finite...
differences except for the scalar advective term which uses second order central finite differences with the ULTRA flux limiter.
The Adams-Bashforth time advancement scheme is used for the non-linear terms and Crank-Nicolson for the time advancement of the diffusive terms. The pressure correction equation is solved using a stabilised Bi-conjugate gradient solver with an incomplete Cholesky factorisation preconditioner [12]. The momentum and temperature equations are solved using a Jacobi solver.

At the inlet to the domain, the upstream stream-wise ($s$) boundary, a time-varying velocity field is re-played as the inlet boundary condition. This field is obtained from a previous DNS simulation of periodic open straight channel flow with the same bulk Reynolds number. The flow entering the domain is then fully developed, unsteady turbulent isothermal open channel flow. At the inlet the temperature field is set as a step function given in equation 4.

$$\phi = \begin{cases} 
1 & \text{for } 0 < y < 0.17 \\
1 - (y - 0.17)/0.06 & \text{for } 0.17 \leq y < 0.23 \\
0 & \text{for } 0.23 \leq y
\end{cases}$$

(4)

The downstream stream-wise boundary is ‘open’ where streamwise gradients in all velocity components and temperature are set to zero. In the span-wise ($r$) direction the domain is bounded by no-slip side walls. The bottom boundary ($y = 0$) is also a no-slip wall. The top boundary ($y = 1$) approximates a free surface with a slip wall condition, i.e. $\partial u_r/\partial y = 0$, $\partial u_\theta/\partial y = 0$ and $u_\theta = 0$.

In stream-wise ($s$), wall-normal ($y$) and span-wise ($r$) directions, the grid has $[n_s, n_y, n_r] = [456, 85, 180]$ nodes with $\Delta y = 0.00025 - 0.015$ and $\Delta r = 0.00025 - 0.021$. In the stream-wise direction $\Delta s = 0.025$ at $r = 4.5$ from the inlet to the start of the bend. On the bend $\Delta s = \Delta \theta$, where $\theta$ is the angular location on the bend, so the grid is linearly stretched between $\Delta s = 0.0166 - 0.0333$ over $r = 3 - 6$ with the transform to a cylindrical coordinate system. Following the bend, in the second straight section, the grid is expanded in the stream-wise direction with a constant 5% growth rate. This second straight region provides a buffer between the outlet and the bend. The flow in this region is not examined in this study.

In most rivers and estuaries the scalar diffusivity is low resulting in $Pr \sim 7$ for thermal diffusivity in water and $Pr \sim 700$ for salinity diffusivity. In this study we have arbitrarily taken $Pr = 1.5$ to limit the resolution requirements of the simulations as the Batchelor scale $\eta_p = \eta/\sqrt{Pr}$, where $\eta$ is the Kolmogorov length scale. A time step of $\Delta t = 0.00025$ was used with the Courant number ranging between 0.03 – 0.06. The simulations were performed until the flow was fully developed and then simulations were advanced for a further non-dimensional simulation time of $t = 70$, approximately 6 complete turnovers of fluid in the domain.

**Results**

In examining the flow results in the bend we adopt a cylindrical coordinate system with angular location $\theta$, radial location $r$ and vertical location $y$. The velocity components are therefore $u_\theta, u_r, u_s$. Time averaged quantities are denoted by an over-bar.

In figure 1, contours of the time averaged stream-wise vorticity defined as, $\omega_s = \partial u_r/\partial r - \partial u_\theta/\partial y$ are shown at $\theta = 45^\circ$. In figure 1 (a) the isothermal flow result is presented. The center of the channel is dominated by a circulation cell generated by the depth varying centrifugal force. Near the outer wall at the surface is a smaller circulation cell, termed an ‘outer bank cell’ [1]. In figure 1 (b), the stratified flow is shown, with a contour line of $\Theta = 0.5$ given as an indication of intrusion height. Above the intrusion the flow is qualitatively similar to the isothermal flow, with the same circulation cell in the channel center and the smaller outer bank cell. Immediately below the thermocline or density interface, the radial component of the flow is outward directed while near the channel bottom at the wall the flow is again inward directed.

There are similarities between this stratified flow result and the estuarine field result reported in [5] under conditions of strong stratification. In that study the authors reported what they termed a three layer flow where the radial component of flow near the surface is oriented in the same direction as that below the pycnocline. The implication of that result is that the near bed velocity is also outwards oriented. The present study finds a similar result, however near the base of the channel we observe an additional very thin layer of inwards directed flow, forming a fourth layer, completing an additional circulation cell. The field measurements in [5] do not extend below $y = 0.05$, the region over which this layer is observed. The favourable comparison of our numerical simulations and the field study over the region where both measurements coincide suggests that the near bed behaviour we observe in our study may also be present in these estuary flows. This has important implications for sediment transport and entrainment behaviour. It implies that in stratified flow, the mean near bed erosion forces act towards the inner side wall, the same as in non-stratified flow, but with reduced strength. The ultimate sediment transport balance across the channel is a more complex issue as the radial flow just below the interface is outward directed but this is beyond the scope of this study.

To underline this result we plot contours of the mean wall shear stress $\tau_w$ in figure 2, where both radial and stream-wise components are included. The shear stress is oriented to the inside of the channel for both isothermal and thermal flows, indicating that the radial component of the velocity is inwards directed though out the channel bend. The scaled vectors and contours indicate that the lateral component is much more significant in the isothermal case however. The total combined shear is also reduced with $\tau_w$ peaking at 0.0106 for the isothermal flow compared with an almost constant result of $\tau_w \approx 0.0036$ around the bend for the stratified flow. The Reynolds number based on wall shear stress or friction velocity is $Re_\tau = 400 - 500$ for the stratified flow.

We examine the stream-wise development of the lateral circulation around the bend with reference to figure 3, where the mean velocity field at the center of the channel ($r = 4.5$) is plotted with streamwise location between $\theta = 5 - 115^\circ$. For the stratified flow we also refer to figure 4, where we plot the local gradient Richardson number, $R_i$, with height at five locations between $\theta = 5 - 115^\circ$ at $r = 4.5$. $R_i$ is defined here as,

$$R_i = \frac{-R_{ib}(\partial \Theta/\partial y)}{(\partial u_\theta/\partial y)^2 + (\partial u_r/\partial y)^2 + \eta_p^2}$$.   

(5)

On the same figure $\Theta$ is plotted together with $\gamma$, the orientation of mean vertical shear in the flow, with respect to the stream-wise direction

$$\gamma = \arctan \left( \frac{\partial u_r/\partial y}{\partial u_\theta/\partial y} \right)$$.   

(6)

In both the isothermal flow and stratified flows, at the entrance to the bend at $\theta = 5$, the stream-wise and radial velocity profiles are similar as the flow begins to adjust to the centrifugal forcing (figure 3). Over $\theta = 5 - 30$, the flow behaviours differ. In
the isothermal flow the helical flow structure continues to develop over the center of the channel. In the stratified flow the density interface is raised towards the inner channel side wall and the baroclinic restoring force acts against the centrifugal forcing. The four layer structure is apparent with the radial velocity oriented towards the outer wall just below the interface and at the top of the channel, and oriented towards the inner wall at the channel base and just above the density interface. Over $\theta = 30 - 120^\circ$ these circulation cells are maintained. The radial velocity in the near bed region of the isothermal flow is much greater than the stratified flow. The stream-wise velocity profiles in both flows are very flat in the region above the interface. In the stratified flow the stream-wise velocity decreases markedly compared with the isothermal flow.

In the stratified flow over $\theta \approx 0 - 25^\circ$, $\gamma \approx 0$ over most of the thermocline so the radial shear is low (figure 4). The interface is sharp and $Rig$ is large, so the stratification is very stable. Over $\theta = 25 - 120^\circ$, as the lateral circulation cells develop, the four layer structure of the flow introduces a complex forcing on the mixing layer. The radial velocity profile $\pi_r$ varies strongly through the thermocline as shown in figure 3. Just above and below the mixing layer the radial component of shear is oriented towards the outer side wall. Through the center of the interface, near the location where $\phi = 0.5$, the orientation is towards the inner side wall. At the bottom of the mixing layer $\gamma \approx +65$, while at the center of the mixing layer where $\phi = 0.5$ $\gamma \approx -72$ and at the bottom of the mixing layer the orientation returns to $\gamma \approx +65$, resulting in a total change in orientation of about 200 degrees.

$Rig$ rises to peaks at the two locations where $\gamma$ passes through $0^\circ$ and shear is due only to the stream-wise component. These peaks appear to coincide with the extremities of the mixing layer. Between the locally high values of $Rig$ is a local minimum point of $Rig$ which also approximately coincides with the location where $\phi = 0.5$ and where the shear is orientated towards the inner side wall and $\gamma < 0$.

At the center of the mixing layer $Rig > 1$ until $\theta \approx 57^\circ$. At $\theta = 30^\circ$, the mixing activity is not observed to be intense in any part of the intrusion, with $Rig \approx 10$ in the center of the interface. We can report that large eddies in the over-flow can be seen impinging on the interface which advect the diffuse fluid from the upper part of the mixing layer into the overflow. By $\theta = 60^\circ$, the interface is more active with the mean gradient Richardson number at the interface $Rig \approx 0.8$. At this location, intermittent oscillations move through the interface some of which have K-H or Holmboe appearance. At $\theta = 90^\circ$, with the same mean gradient Richardson number as at $\theta = 60^\circ$, the interface is more energetic with K-H like waves observed in the center of the interface. These oscillations appear with circulation with $\omega_\theta > 0$, with shear towards the inner side wall. At the top of the thermocline, similar K-H structures are observed with the opposite rotation. Similar behaviour is observed intermittently in the lower region. In both these locations the vorticity of the oscillations or waves is consistent with the mean shear observed in these locations. In this way mean shear and $Rig$ profiles we see in figure 4 are indicative of the type of wave like behaviour and orientation we observe in the unsteady flow.
The identification of the unexpected near bed behaviour is potentially significant for sediment transport and erosion studies. In the zone of vertical K-H structures, the shear directed towards the inner side wall while in the center of the mixing layer it is oriented towards the inner wall. The mixing layer in this study is initially sharp with a stable Richardson number. After $\theta \approx 60^\circ$ the Richardson number decreases to $R_i \approx 1$ and an interesting mixing dynamic is observed. In the upper and lower regions of the interface the shear produces Kelvin-Helmholtz (K-H) like structures which have the same rotational sense. Between these regions, K-H structures are also observed but they rotate in the opposite direction. In this way the K-H structures are simultaneously produced at three vertical locations though the mixing layer and have rotational sense aligned with shear at these locations.

Acknowledgements

The authors gratefully acknowledge the support of the Australian Research Council (ARC). The first author was supported by ARC post-doctoral research fellowship DP110103417.

References