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Abstract

A significant problem in inertial confinement fusion is that the
material interfaces in the converging flow are subject to the
Richtmyer-Meshkov instability when they are impulsively ac-
celerated. It has been demonstrated that this instability can be
suppressed in magnetohydrodynamic (MHD) flows at least for
flow configurations with rectangular geometry. In order to un-
derstand the flow induced by attempting such suppression in
converging flow configurations, it is necessary first to investi-
gate the underlying base-flows, the canonical versions of which
correspond to converging cylindrical and spherical MHD Rie-
mann problems. Here, we present the numerical solution to one
such case: the cylindrical MHD Riemann problem shown be-
low with a uniform initial magnetic field of strength β = 2 and a
pressure ratio of three across the interface. The wave structure is
initially characterised by two outward- and two inward-moving
waves, but as the solution develops, discontinuities form along
the waves, producing a more complex flow structure. We inves-
tigate the different flow structures, their formation times, and
identify how the compression achieved at the centre of the im-
plosion is affected by the magnetic field.

Introduction

Inertial confinement fusion (ICF) is a process by which a cap-
sule filled with a fuel such as deuterium or tritium is made to
ablate rapidly by a spherical arrangement of incident radiation,
sending a spherical shock into the centre of the capsule, aim-
ing to compress the fuel to initiate a nuclear fusion burn. The
effectiveness of ICF is limited to some degree by the Richtmyer-
Meshkov instablity (RMI) [11, 15], which occurs when a shock
wave interacts with a perturbed interface between fluids of dif-
ferent densities. The RMI is also relevant in areas such as as-
trophysics [1], supersonic and hypersonic airbreathing engines
[19], reflected shock tunnels [18, 2], and shock-flame interac-
tions [8].

In the case of ICF and astrophysical processes, the media in
which the RMI occurs may be modelled as a plasma, and can
therefore interact with applied and ambient magnetic fields.
Furthermore, it has been demonstrated through numerical sim-
ulation [16, 22], shock theory [21] and linear analysis [20] that
the RMI is suppressed in certain flow configurations, and it
is well-known [4] that the Rayleigh-Taylor instability is sup-
pressed at high wavenumbers under the same conditions.

In ICF, the RMI and Rayleigh-Taylor instabilities must be con-
trolled to prevent the breakup of the target shell and successfully
compress the fuel. As the target materials become rapidly ion-
ized, the possibility exists of mitigating the RMI through the
application of a magnetic field. However, while the converging
shock driven hydrodynamic (HD) RMI has been investigated
thoroughly in recent times [7, 13, 10], the equivalent MHD case
with a magnetic field present has yet to be explored.

This study is intended as the first step in understanding the effect

of the magnetic field on the RMI in the cylindrically converging
MHD case. While not investigating the RMI directly, it involves
simulation, analysis, and interpretation of the cylindrical, two-
dimensional (2D) MHD Riemann problem with applied mag-
netic field as shown in Figure 1, as a canonical flow. This corre-
sponds to base-flow that will underlie later MHD RMI simula-
tions. As such, understanding this flow is critical to analysis and
interpreting future simulations where the RMI is present. The
laterally applied magnetic field configuration is used since it is
the most basic, and yet shows a rich resultant flow structure, as
can be seen in Figure 2.

This paper begins with a qualitative discussion on the structure
of the solution, where major features of the flow are identified.
This is followed by an analysis of the early-time behaviour of
the flow, enabling identification of the types of observed waves.
Features of the 2D flow at intermediate and late times are then
examined and explained, and finally, the point of convergence
is compared with the HD (zero magnetic field) case.
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Figure 1: Initial configuration of the cylindrical MHD Riemann
problem (t = 0). Magnetic field lines are overlaid. All quantities
non-dimensional, with time normalized by the Alfvén time.
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Figure 2: Developed pressure distribution at t = 0.14.



Formulation

The set-up for the 2D-cylindrical converging Riemann problem
is shown in Figure 1, with overlaid magnetic field lines indicat-
ing field strength and direction. It consists of two uniform qui-
escent fluids separated by a circular interface. Since the high
pressure region is surrounding the low pressure region, the re-
sultant flow will converge. Across the interface, the pressure
and density ratios are p

p0
= ρ

ρ0
= 3, where p0 and ρ0 are the

non-dimensional base pressure and density, respectively. All
variables are non-dimensional and base variables are defined
as occurring on the inner side of the interface. A uniform mag-
netic field B = B0êx with non-dimensional strength β = 2p0

B2
0
= 2

is applied in the x-direction across the system. The fluid has a
specific heat ratio γ = 5

3 . The model is ideal and neglects dif-
fusion effects, which occur over a much larger timescale than
advection effects. We define θ as the angle from the positive
x-axis.

The numerical method uses compressible ideal MHD equa-
tions using an unsplit upwinding method containing an eight-
wave upwinding formulation, of the sort described in Samtaney
[16, 17, 5]. The magnetic field is kept divergence-free with the
projection method [17]. The grid used in this analysis is a uni-
form cartesian 800-square mesh over non-dimensional length
variables x and y varying from -1 to 1. The initial interface is
centred at the origin and has radius r = 0.3.

Overall solution structure

The wave structure can be seen in Figure 3, which shows
the distribution of the vorticity and density gradient at vari-
ous times. Vorticity is shown as it clearly shows the locations
of most of the MHD waves, while the density gradient shows
the location of the density interface, which is prohibited from
carrying shear by the MHD Rankine-Hugoniot relations. The
early time flow strucure consists of two inward-moving and two
outward-moving waves bracketing the contact. The outermost
expansion is not visible in vorticity, but its presence can be de-
duced in the t = 0.04, t = 0.08, and t = 0.12, plots where the
magnetic field lines outside the visible wave structure are made
to bend from their initial horizontal orientation, showing the
two-way coupling between the fluid motion and the magnetic
field.

All waves originate from the interface, and are therefore ini-
tially circular; the increasing aspect ratio depends on the wave
speeds on magnetic field orientation. At t = 0.12 singulari-
ties in the wave curvature (“kinks”) develop at θ = ±90◦ in
the slower converging wave; as this kink moves inward, other
kinks bracketing θ = ±90◦ in the diverging wave also appear.
Also visible is a flattening of the innermost wave at t = 0.12,
so that, at θ = ±90◦ the wave converges at a different rate
than at θ = 0◦,180◦. This behaviour is inverted in the slower
converging wave, which approaches the centre more quickly at
θ = 0◦,180◦ than at θ =±90◦. All waves approach zero vortic-
ity at θ = 0◦,180◦, and ±90◦.

Early-time wave structure

At very early times, the wave structure in the radial direction at
any point along the interface can be estimated from the solution
to the one-dimensional (1D) planar Riemann problem with the
local magnetic field orientation, as curvature effects are initially
small. Thus, to understand the flow further, we observe the pres-
sure, density, and vorticity developments along radial lines and
compare these to the 1D equivalents. A combined plot showing
such a comparison between the 1D and 2D solutions at certain
angles to the magnetic field is shown in Figure 4.

Figure 3: Jump evolution as shown by vorticity (solid curves)
overlaid on density gradient (faint pseudo-circular structure).
Vorticity shows the jumps of interest; density gradient shows
the contact surface.

Figure 4: Comparison of non-dimensional pressure in the 1D
and cylindrical 2D Riemann problems along rays at selected
angles to the magnetic field. Stippled lines indicate the quasi-
1D result and solid lines indicate the 2D result.

The 1D solutions are formulated under the same pressure and
density ratios and β-value as in the 2D case, with the applied
magnetic field at the same angle to the interface as it is along
the ray of interest. Figure 4 shows that, at early times, there
is excellent correlation between the 1D and 2D cases for both
jump strength and speed.

The outward-moving waves move at the same speed for both
cases, indicating that they are MHD expansions moving at the
fast and slow magnetosonic speeds. The inward-moving waves
increase in velocity relative to the 1D case, implying that they
are magneto-sonic shocks, accelerating due to shock focussing.

Using the usual classification system [6], the waves in the 1D
case are tracked and classified. The following observations are
made:

• At θ = 0◦, the HD case is observed, with an inward-
travelling shock and an outward-travelling expansion.

• For 0◦ < θ < 90◦, four jumps (not counting the contact
surface) are seen: an outward-travelling fast expansion, a
(generally) outward-travelling slow expansion, an inward-
travelling slow shock, and an inward-travelling fast shock.
For higher θ > 60◦ the slow expansion appears to be



slowly inward-travelling, though the flow over it is still
left-to-right. The slow magneto-sonic speeds decreases at
higher θ, leading to the slow expansion and shock moving
more slowly.

• At θ = 90◦, the slow expansion and shock never sepa-
rate from the contact surface. Analysis indicates that total
pressure 1

2 p2
0 + |B|2 remains constant across this “com-

bined” jump, allowing its classification as a tangential dis-
continuity.

Some numerical oscillations are visible in the θ = 90◦ case, due
to our use of a low-dissipation Riemann solver. The resolution
that was used was sufficient to resolve all features of the flow.
As we are simulating equations with no physical dissipation to
set a minimum length-scale, pointwise grid convergence is not
a relevant concept.

We now translate this information to the 2D case in order to
interpret the shock structure.

Details at intermediate times

We assume that the fundamental nature of the shocks remain
unchanged. Some special features of the two-dimensional flow
will now be discussed in light of the (now known) wave types.

Figure 5: Closeup view of kink in converging slow shock and
surrounding wave structure with superimposed velocity vector
field at t = 0.17. Vorticity in red and blue and density gradient in
grey. Pressure distribution shown for wave type identification.

Figure 3 shows a clear decrease of vorticity at θ = 0◦,180◦ and
θ =±90◦. At 0◦ and 180◦, this is because the shocks are hydro-
dynamic and have zero jump in tangential velocity across them,
so they do not carry vorticity. At ±90◦, the vorticity must pass
through zero due to the symmetry of the velocity field.

At θ = 0◦ and 180◦, the slow and fast shocks travel together.
Since the component of the magnetic field tangential to the
shocks here is zero, the slow and fast shocks actually exist as
a single HD shock. At later times, the fast shock moves away
from the slow shock due to multidimensional effects. The same
is true for the slow and fast expansions, though the latter of
these is not visible in Figure 3.

The “kink” in the converging slow shock that forms around time
t = 0.08 at angle θ = 90◦ is initially placed on the contact sur-

face, where the 1D analysis predicts a tangential discontinuity.
In the 2D case, this behaviour changes at later times. Figure 5
shows the neighbourhood of the kink at t = 0.17 with an over-
laid velocity vector field; here, the kink has clearly moved in-
ward from the contact surface.

Since the velocity field is horizontally converging near the kink,
two additional refected waves form so that the horizontal com-
ponents of the velocity field may be cancelled. Since these
waves move inward and downward, Figure 5 shows that they
are shocks, due to the upstream flow being at a lower pressure
than downstream. These waves connect with the slow expan-
sion wave structure away from θ = 90◦, and form singularities
in curvature at the connection points.

Late-time behaviour

Similar behaviour can be seen in the fast shocks at θ = 0◦ and
180◦. Figure 6 shows the density distribution at the centre of the
flow. (Density is more easily visualized than vorticity in this
case.) Here, a kink forms at the slowest propagating point on
the fast shock intersection. Similarly to at θ = 90◦, this causes
reflected waves to project outwards, away from the axis and
meeting with the converging slow shocks nearby.

Figure 6: Closeup view of density distribution at the domain
centre near convergence.

Figure 7: Profiles of the flow density for MHD and HD cases
near the centre of domain. MHD cases are plotted at θ =
0◦,180◦ and θ =±90◦.

Figure 6 shows that the fast shock converges faster in the verti-



cal direction (along θ = ±90◦ than in the horizontal direction.
This causes convergence in to occur in two stages. First the fast
shocks are squeezed together from above and below, forming
what appears to be a horizontal “line” of convergence in Figure
6(b); this is followed by the reflected shocks emanating from
the fast shock kinks converging horizontally. The maximum
density and pressure in the solution are generated at this time.
This is in sharp contrast to the HD case, which is rotationally
symmetric and convergence occurs at a point at a distinct time.

Figure 7 shows profiles of the MHD flow density at the same
elapsed times as Figure 6 at angles of θ = 0◦ and ±90◦, and
compares these with the profile of the (rotationally symmetric)
HD flow density at the same times. Convergence of the θ =
±90◦ shocks occurs first, as observed previously, at t = 0.150.
The ±90◦ density then peaks and diverging waves are visible,
travelling outwards between t = 0.160 and t = 0.165. Conver-
gence of the θ= 0◦ and 180◦ shocks follows at t = 0.160, begin-
ning to form the diverging waves at t = 0.165. The HD shock
converges last, after t = 0.165. The slightly faster convergence
of the θ = 0◦ MHD shock compared to the HD shock is likely
due to the formation of a kink at that angle, which propagates
faster than the original smoothly curved shock.

The peak non-dimensional pressure and density experienced by
the MHD flow are around 6.9 and 3.1 respectively, compared
to the much higher HD peaks of 21.4 and 5.5 respectively. The
significantly lower values in the MHD case are due to the in-
creased area over which convergence occurs and the different
behaviour of the horizontal and vertical flows. The width of the
horizontal “line” of convergence is likely a function of the field
strength and direction, the interface pressure ratio and initial ra-
dius, and some fluid properties; however, a parametric study of
this feature is not included here.

Conclusions

This investigation considered the 2D cylindrical Riemann prob-
lem in MHD as a canonical flow. The flow structure was sim-
ulated numerically and compared with solutions to the 1D Rie-
mann problems, leading to the classification of shocks and ex-
pansions in the flow. Additional structures in the flow due
to multidimensional effects were also presented and discussed.
The understanding gained from this case study will lead to bet-
ter understanding of other canonical MHD flows and pave the
way for analysis of MHD RMI behaviour in converging flows.
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