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Abstract

Approximately homogeneous isotropic turbulence (HIT) is pro-
duced by passing a uniform flow through a grid followed by a
1.36:1 contraction. The contraction stretches the flow in the
streamwise direction and so reduces the anisotropy of the grid
turbulence. This paper presents measurements of a passive
scalar in HIT, and so extends the work of Lavoie [6] and Be-
naissa et al. [3]. A wind-tunnel grid flow is slightly heated
(∆T≈2◦C) by a second fine-wire grid so that temperature acts
as a weak scalar contaminant. For three different grids, the
variance of the scalar fluctuation (θ ′2/∆T2) is measured over
the full length of the test section. The amplitude of temper-
ature fluctuation is well represented by the power-law decay
θ ′2/∆T2=α[(t−to)Uo/M]n. With least-square curves of best fit,
the r.m.s. difference between the power law and the data is no
more than 1%. All numerical coefficients (to, α andn) depend
on the geometry of the grid (or the initial/boundary conditions
of the flow). In comparison with the square-grid data of Zhou
et al. [12], these results show that the effect of the contraction is
to increase the decay exponent from−1.46 to−1.18.

Introduction

The purpose of the research reported here is to improve our un-
derstanding of turbulent mixing. Measurements of a passive
scalar are obtained in approximately homogeneous isotropic
turbulence. The passive scalar is a property of the fluid which
has no effect on the dynamics of the flow; in this case the pas-
sive scalar is temperature. Homogeneous isotropic turbulence
(HIT1) is the least complex form of turbulence and is approxi-
mated experimentally in the decaying velocity and temperature
fluctuations downstream of a grid. The turbulence in this flow
decays because there is no mean shear and hence no production
of turbulence kinetic energy. The study of scalar fluctuations is
of interest because the mixing of scalar quantities is at the core
of phenomena such as dispersion of pollutants and combustion.

In the flow under consideration, turbulence is produced by three
different biplanar grids of uniformly spaced square or round
bars, as shown in Figure 1. The vertical and horizontal bars
in the grid are in contact. By measuring 1.2<u′2/w′2<1.5 for
the ratio of streamwise to cross-stream velocity fluctuations,
Lavoie [6] shows that the grid turbulence is anisotropic. To re-
duce the anisotropy, he [6] inserts a contraction downstream of
the grid and finds that, with a contraction area ratio of 1.36,
the turbulence is less anisotropic (0.9<u′2/w′2<1.2). The con-
traction changes the anisotropy by stretching the flow. In par-
ticular, for round bars wrapped with a helix of wire to reduce
periodic shedding, Lavoie [6] finds that using this grid (known
as “Rd44w”) with the contraction produces a nearly isotropic
turbulence (u′2/w′2≈0.99).

Reducing the anisotropy of an experimental flow allows more
accurate testing of developments in the theory of turbulence.

1In HIT, the free-stream velocity is uniform and the varianceof
streamwise fluctuationu(x)′2 is equal to the variance of cross-stream

fluctuationsv(y)′2, w(z)′2 (the dash denotes the r.m.s.; e.g.u′=
√

u2). All
three components of fluctuating signal have a normal distribution.

Many studies of grid turbulence[2, 5, 9, 11] suggest that the de-
cay of velocity variance (q′2=u′2+v′2+w′2) and of scalar vari-
ance(θ′2) follow power laws (q′2∝xm, θ′2∝xn), where the de-
cay exponents (m,n<0) depend on grid geometry and Reynolds
number.

Before the present work, the only available temperature data
which compares the different grids studied by Lavoie [6] was
from Benaissa et al. [3]. In their [3] experiments, the decay
exponents (n) are obtained from measurements in the region
25<

∼x/M <
∼77. The current paper extends the region of mea-

surements in stretched grid turbulence to 18<
∼x/M <

∼100 and it
includes measurements of skewness and kurtosis of temperature
fluctuations.

Apparatus

Figure 1 shows the three grids which match those reported by
Benaissa et al. [3], one of square bars at 35% solidity (Sq35)
and two of round bars at 35% and 44% solidity (Rd35, Rd44w).
The mesh pitch for each grid isM =24.76 mm. The results are
obtained using the same wind tunnel as that used by Lavoie [6]
and Benaissa et al. [3], and the tests are run at the same mesh
Reynolds numberReM =MUo/ν =10,400. Taylor micro-scaleλ
is in the range (25<λu′/ν <55).

Comte-Bellot and Corrsin [4] have discussed the method of re-
ducing the anisotropy of grid turbulence with a contraction and
Lavoie [6] has used this to study the effects of initial conditions.
To account for acceleration of flow through the contraction, they
[4, 6] have converted streamwise distance to a decay time using

tUo=
∫ x

0

[

U(x)/Uo
]−1dx , (1)

which simplifies totUo=x if U =Uo. The mean velocityU(x)
is the centreline velocityUcl(x) of the wind-tunnel flow in the
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Figure 1: The biplanar grid; mesh solidity is σ =d/M(2−d/M).
The x coordinate axis lies on the centreline of the test section.
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Figure 2:Centreline distribution of wind-tunnel velocity.

absence of a grid. Figure 2 shows measurements ofU(x) with
a Pitot-static probe and a (100-Pa) micro-manometer. The
variation in wall pressure over the region of constant velocity
(18<

∼x/M <
∼100) is no more than 1% of the dynamic pressure.

The flow is heated with a “mandoline” or grid of 0.5-mm-
diameter Chromel-A wire located atx = 1.5M downstream of
the turbulence-generating grid [3, 12, 13]. The horizontal and
vertical wires in the heater grid are separated by a gap of about
0.6M and have the same pitch as the turbulence-generating grid.
Temperature is controlled by adjusting a variable-voltage (0 to
275 V) power supply.

Measurement technique

The temperature fluctuations are measured with a “cold-wire”.
The wire (d ≈0.64µm; l/d ≈230) is etched from a fine Wol-
laston (Pt-10%Rh) and is operated with a locally manufac-
tured (1-mA) constant-current anemometer. To obtain a suffi-
ciently passive scalar, the heated flow is slightly warmer than
the ambient air (∆T≈2◦C). The temperature coefficient of re-
sistance of the wire, calibrated using a type-T thermocouple, is
about 0.15Ω/◦C.

The signals from the cold-wire probe are digitised with a
±10.0-V, 12-bit A/D converter. To minimise electronic noise,
the signals are filtered and checked by plotting the tempera-
ture spectra. For the thermal fluctuation (θ, ◦C) reported in
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Figure 3:Probability density function; (a)θ/θ ′; x/M≈18→100;
(b) (∂θ/∂x)/(∂θ/∂x)′ — the top 3 set of curves are vertically offset
by 2, 4 and 6 decades. The derivative uses the 3-point centre
difference scheme. The normal distribution is shown as dashed
lines. For the data of Tong and Warhaft [10] (+; a square-bar
grid of 34% solidity; x/M≈40→200; ReM=9,700; Reλ∼38), the
grid flow is not stretched by a contraction.

the following pages, each “data point” in the graphs is an av-
erage from (up to) 4 separate data records. The cut-off fre-
quency of the low-pass filter is half the sampling rate and in
each record, data is sampled for 30 seconds. To check that the
data records are of sufficient duration, the probability density
functions are compared with the normal distribution. In Fig-
ure 3, the signal fluctuation (θ ) and its derivative (∂θ/∂x) are
non-dimensionalised using the respective standard deviations.
The streamwise derivative is obtained by assuming the Taylor
hypothesis (∂x=Uo∂t). Figure 3 shows that the distribution for
θ/θ ′ is approximately Gaussian (for up to 3.5 standard devia-
tions from the mean), which suggests that the present sample
size (∼105) is adequate for r.m.s. statistics. The probability
density of∂θ/∂x is not Gaussian (Figure 3).

Results and discussion

For decaying homogeneous isotropic turbulence, Antonia et al.
[2] show that a solution to the scalar transport equation takes
the form of a power law,

ln{θ′2/∆T2}=n·ln{(t−to)Uo/M}+ ln{α} , (2)

whereto, α andn are determined by the boundary conditions.
Equation 2 applies to measurements which are downstream
of the regions of initially developing turbulence and acceler-
ated decay in the contraction [7, 11]. Figure 4 shows tem-
perature variance in the range 22<

∼ tUo/M <
∼110, where the

time-averaged velocity is independent of streamwise distance
(Ucl/Uo≈1±0.01). To avoid possible effects of the duct exit,
measurements stop about one duct width (∼12M) short of the
duct exit plane.

The analysis begins by selecting a virtual origin which makes
the decay exponent independent of streamwise distance from
the grid. The method of curve fitting data points in Figure 4
is similar to the least-square technique of Mohamed and LaRue
[9] and Lavoie [6]. For each grid, there are 27 data points spaced
at intervals which appear uniform when plotted on a logarithmic
scale (Figure 4).

In Figure 5, the decay exponentn is plotted as a function of “x1”
— the first data point used for curve fitting. Figure 5 shows that
the value ofn depends on the virtual origin. The virtual origin
toUo/M is selected so that the decay exponent is independent of
the range of the data used for curve fitting. This means that
all of the data can be used for the curve fitting. Figure 6 shows
typical behaviour of the curve fitting as virtual origin and curve-
fitting range are varied. At optimumtoUo/M, the fitting error is
about 0.1%. If the virtual origin is placed at the grid, the error
is no more than 1%. Table 1 is a summary of the curve-fitting
results. The width of the 95% confidence interval forn is 0.02.

Inspection of the curve fits in Table 1 and a review of previ-
ous measurements in Table 2(a) show that, for a fixed power-
law decay range with virtual origin at the grid, the round bar
“Rd35” produces the largest scalar decay rate and the round
bar “Rd44w” produces the smallest scalar decay rate. The ve-
locity decay rate instretched grid turbulence follows the same
trend (|m|, |n|: Rd44w<Sq35<Rd35). Lavoie [6] (page 119)
observes that: “the anisotropy of the flow tends to increase the
magnitude ofm, since Rd44w generates the most isotropic tur-
bulence (u′2/w′2≈0.99).” Kármán and Howarth [5] show that,
if turbulence is isotropic and self preserving, the decay is the-
oretically proportional to(tUo/M)−1. Since Lavoie [6] obtains
powers ofm<−1, this suggests that the grid turbulence is not
isotropic. Rather,m depends on initial conditions but less so if
the anisotropy (at the large scales) is reduced by the contraction
[6]. For grid Sq35, the contraction tends to increase the dis-
placement of the virtual origin and reduces|n| by about 0.28 or
19% (see Tables 1 and 2(b)). Without a contraction, Zhou et al.
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Figure 4:Decay of passive scalar downstream of each grid.
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(b) r.m.s. curve-fitting error as a function [x1→xlast].

[12, 13] observe that the virtual origin for Sq35 grid turbulence
is small (i.e.toUo/M=1.5) and so they do not adjust their data
for virtual origin when calculatingn.

For homogeneous isotropic turbulence (HIT), we assume the
skewness (Sθ =θ3/θ ′3) and kurtosis (Kθ =(θ4/θ ′4)−3) are very
near zero (or close to Gaussian). However, grid turbulence only
approximates HIT, and so its departure from “Gaussian” higher-
order moments serves as a measure of the anisotropy.

Table 1: Summary of power-law curve fit. At 95% confidence,
the uncertainty in n is ±0.01; σr is the r.m.s. difference between
the “log” of the data and Equation 2. The range of curve fit data
is shown as (t−to)Uo/M.

Grid toUo/M (t−to)Uo/M n α σr (%)

Sq35 0 28 to 110 −1.34 0.254 0.17

35 to 80 −1.34 0.259 0.15

6.0 16 to 110 −1.18 0.116 0.14

35 to 80 −1.18 0.117 0.11

Rd35 0 34 to 110 −1.41 0.728 0.19

35 to 80 −1.44 0.798 0.15

6.0 16 to 110 −1.28 0.356 0.13

35 to 80 −1.27 0.349 0.13

Rd44w 0 27 to 110 −1.33 0.315 0.19

35 to 80 −1.32 0.299 0.10

3.5 19 to 110 −1.25 0.209 0.22

35 to 80 −1.24 0.193 0.10

Table 2:Review of decay exponents of velocity (m) and temper-
ature (n) from the same wind tunnel (a) with a 1.36:1 contrac-
tion and (b) with no contraction. The anisotropy ratio is u′2/v′2

or u′2/w′2. ReM =10,400, Reλ∼25→55. ∆T≈2◦C. toUo/M≈0.

Group/Ref. Grid u′2/v′2 u′2/w′2 (t−to)Uo/M m(q′2) n(θ′2)

(a) Benaissa Sq35 No 25 to 77 No −1.35*

et al. [3] Rd35 data data −1.42*

Rd44w −1.24*

Lavoie [6] No 0.99 −1.10 No

Rd35 data⊕ 1.07 30 to 77 −1.22 data

Sq35 1.11 34 to 77 −1.20

(b) Lavoie [6] Rd44w No 1.30 29 to 80 −1.18 No

Rd35 data⊕ 1.27 32 to 80 −1.19 data

Sq35 1.45 30 to 80 −1.04

Zhou [13] 1.22 1.18 −1.33 −1.36

et al. [12] 1.19 1.16 −1.3 −1.4

20 to 80 −1.46

* In their Figure 3, Benaissa et al. [4] quote−1.11(Sq35), −1.23(Rd35) and
−1.05(Rd44w), but the tabulated values above seem to fit their data better.

⊕Lavoie[7] assumesv=w for calculatingq.

Figures 7 and 8 show the higher-order moments of tempera-
ture and temperature gradient. The skewness and kurtosis of
temperature are closer to zero for the square grid (Sq35) than
for the round grids (Rd35 and Rd44w). Grid Rd35 gives the
largest skewness and kurtosis. This suggests that the large-scale
anisotropy from the square bars is weaker than from the round
bars. Figure 7 shows a clear dependence of large-scale motion
on the different grids. Since the three grids produce nearly iden-
tical trends inS∂θ/∂x and inK∂θ/∂x (Figure 8), we conclude that
the small-scale motion has a weak dependence on the geometry
of the grids.

A comparison of the skewness in Figure 7 with that of Mills
et al. [8] shows the combined effect of the contraction, the
wire wrapping of the round bars and a lower heating temper-
ature (reducing∆T ≈ 5◦C to 2◦C) is a more constant skewness
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(Rd44w:Sθ∼0.05). Unpublished data of Antonia shows that
the unstretched Sq35 grid flow has a higher value of kurtosis
(Kθ∼0.23).

Antonia et al. [1] report that, for an unstretched grid flow,
the moments of temperature derivative fall in the ranges
−0.34<∼S∂θ/∂x

<
∼0.05 and 2<∼K∂θ/∂x

<
∼7. Their measurements

(x/M ≈ 29→115; ReM ≈ 20,200; Reλ ∼ 40; ∆T≈5◦C) are ob-
tained with a grid of round bars at 36% solidity which closely
matches the present grid Rd35. Comparison of Antonia’s et al.
[1] data with the results in Figure 8 suggests that the contrac-
tion keeps the skewness small (|S∂θ/∂x|<∼0.5) and reduces the
kurtosis (K∂θ/∂x) by a factor of about 2.

Conclusions

This paper describes the effect of stretching on decaying pas-
sive scalar fluctuations in grid turbulence. Stretching of the flow
is provided by a 1.36:1 contraction. Measurements with three
different turbulence generating grids show that scalar fluctua-
tions follow a power-law decay, and that the power-law expo-
nent (n) depends on grid shape. The power-law decay exponent
also depends on the virtual origin of the grid turbulence. The
virtual origin is chosen so that the power-law decay formulae
remain valid over the full range of the experimental data. Mea-
surements ofn are in the range−1.28 to−1.18. However, in

isotropic turbulence, the theoretical decay exponent is−1. For
the square grid (Sq35), the effect of stretching increases the de-
cay exponent from−1.46 to−1.18.

Both decay rate exponent and skewness indicate that the grid
with square bars produces less anisotropic turbulence than the
grids with round bars (“Rd35 and Rd44w”).
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