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Abstract

We have considered transient growth analysis for a rigid straight
circular pipe with a non-zero mean flow rate and single har-
monic time-periodic component.

The investigation has been conducted using a spectral element
code for varying pulse frequencies and time-periodic ampli-
tudes, bulk flow Reynolds numbers between 500-4000 and az-
imuthal wavenumbers 0-4.

Variation in the periodic amplitude of the flow was achieved via
the ratio of peak flow to bulk flow area averaged flow-rates and
was set between 2 and 3. Periodicity was varied according to
the reduced velocity - the dimensionless distanced traversed by
the bulk flow over one pulse cycle and was either 5 or 10.

The condition producing optimal transient growth of a pertur-
bation was computed on a spectral element mesh scaled for a
single axial wavenumber. The peak transient growth was found
to scale with Reynolds number squared - a corollary that is
also observed in the stability of Hagen-Poiseuille flow (Schmid
and Henningson 1994) as well as other parallel shear flows.
Changes to the amplitude of the time periodic component only
affected the timescale in the evolution of the optimal perturba-
tion.

The largest transient growth was observed for an azimuthal
wavenumber of unity and was an order of magnitude larger than
for axisymmetric perturbations given similar parameters. Ini-
tial optimal perturbations had small axial flow components and
were axially invariant for small Reynolds numbers. For an az-
imuthal wavenumber of unity optimal perturbations appeared
as a counter rotating vortex pair in the meridional plane of the
pipe.

Introduction

Pulsatile flows in straight, rigid pipes for incompressible New-
tonian fluids can serve as idealised models for arterial blood
flows as well as for engineering applications for peristalsic
flows including microfluidic devices. In either of these cases,
understanding the likelihood of turbulent flow as well as how
turbulence arises can aid the prevention or promotion of such
behaviour.

These flows are driven by the sum of steady and oscillating pres-
sure gradients, and owing to the linearity of the Navier Stokes
equations in this case, can be constructed as the superposition
of a Hagen Poiseuille flow and oscillatory flow, with the solu-
tion to the latter being described by Bessel Fourier functions,
first published by (Sexl 1930).

Linear stability analysis for Hagen-Poiseuille flow has found
these flows to be asymptotically stable over all Reynolds num-
bers considered (Schmid and Henningson 1994). Similar stud-
ies for oscillatory flows have determined that single harmonic
oscillatory flows are also linearly stable over all parameters con-
sidered (Yang and Yih 1977). it has been noted that this also
implies that any linear combination of steady and oscillatory
components is linearly stable ie: pulsatile flows with an arbi-

trary number of harmonics are linearly stable over all param-
eters (Nebauer and Blackburn 2009). However, experimental
studies have observed turbulence in these flows, and have doc-
umented the parameter space over which it is observed (Stettler
and Hussain 1986).

Transient stability analysis has been considered for pulsatile
flows, however this has been constricted to consider only axi-
symmetric perturbations (Fedele et. al 2004). The present study
aims to extend this work for non-axisymmetric perturbations for
single harmonic pulsatile flow.

Base Flows and Problem Parameters

The solution to incompressible flow in a pipe driven by the sum
of a steady and oscillating axial pressure gradients K0 and Kω

respectively was first considered by (Sexl 1930) and later by
Womersley (1955). There exists a closed form analytical solu-
tion to this problem, shown below in (1) for the axial velocity
component.
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where pipe geometry is denoted by radius, R and flow proper-
ties viscosity, µ and density, ρ. Wo - the Womersley number is a
dimensionless frequency parameter defined as Wo =

√
ρωR2/µ

where ω = 2π/T , T being the pulse period and J0 is a com-
plex Bessel function. In the case when Wo approaches zero,
the period of oscillation grows without bound and the result-
ing flow-field approaches the standard Hagen-Poiseuille solu-
tion and parabolic profiles result.

Given the complexity associated with the Bessel Fourier func-
tions in the base flows it is useful to define an additional term
- the instantaneous area-average (bulk) flow rate ū(t), and rep-
resents the flow-rate through a circular cross section of the pipe
at particular time. For a pulsatile flow, it is also useful to de-
fine the mean flow-rate, ūm representing the bulk flow over one
pulse cycle.
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Another term also used to define waveform specific parameters
is the peak bulk flow velocity (ūp) and is defined as the maxi-
mum area averaged flow over one pulse cycle.

ūp = max ū(t) 0≤ t ≤ T

Dimensionless Parameters

There are two dimensionless parameters that can be used to de-
scribe the temporal periodicity of the flow - Womersley number
and reduced velocity. The Womersley number (Wo) is a dimen-
sionless frequency parameter that can be considered as the ratio



of oscillatory to viscous forces and the reduced velocity (ured)
the distance traversed by the bulk flow over one pulse cycle

ured =
ūmT

D
(2)

Figure 1: Radial velocity profiles for oscillatory flow a) wo = 20
b) wo = 5.

We only consider pulsatile waveforms with single harmonic,
and for this class of base flows it is sufficient to specify a single
parameter to describe the waveform - the peak to mean veloc-
ity ratio. (ūpm) it is defined as the ratio of peak bulk flow to
the mean bulk flow over a single pulse. We consider two wave-
forms for this study, having peak to mean velocity ratios of two
and three in order to investigate the variation associated with
flows having stronger oscillatory components. Taking D as the
characteristic length scale, and ūm as the characteristic velocity
scale, the Reynolds number is defined as:

ūpm =
ūp

ūm
Re =

ūmD
ν

(3)

Radial profiles for oscillatory flow shown in Figure 1 illustrate
how these vary between different Womersley numbers for oscil-
latory flow over a single pulse cycle. At low Womersley num-
bers, the radial profiles resemble Hagen-Poiseuille flow with al-
most parabolic profiles at the time of maximum area averaged
flow, and at all other times the profiles are flat with sharp gra-
dients near the point of contact with the wall. At high Wom-
ersley numbers, the flat profiles are accentuated further, being
present at all points during the pulse cycle, while near the walls
the velocity profile exhibits distinctive overshoots first noted by
Richardson and investigated by Sexl.

Numerical Methods

Transient Stability Analysis

Working in primitive variables and considering flow over a do-
main Ω the incompressible Navier–Stokes equations can be
written as:

∂tuuu =−uuu ·Ouuu−Op+Re−1O2uuu, (O ·uuu = 0), (4)

where p is the kinematic pressure.

The flow-field u can be described as the sum of a steady com-
ponent, U as well as an arbitrary perturbation to this flow u’.
realizing u = U + u’ and substituting this into (4) allows for an

expression of the time rate of change for the perturbed velocity
component.

∂tuuu′ =−[UUU ·O+(OUUU)T )·]uuu′−Op+Re−1O2uuu′ (5)

Application of the incompressible flow condition in (4) allows
for an expression of pressure in terms of other flow parameters
and leads to a partial differential equation of form: ∂tuuu′ = Luuu′.

Supposing that a perturbation is an eigenvector of L with eigen-
value greater than or equal to one then this perturbation will
grow without bound in time as ∂tu′ ≥ 1. This can be extended
to consider the perturbation at an arbitrary time after the flow
has been perturbed through an exponential transformation of
(6). This results in finding (complex) eigenvector / eigenvalue
pairs of the state transition operator, A(T ) in (4) with eigenval-
ues having magnitudes greater than 1 for a perturbations that
will grow in time without bound.

A(T ) = exp
∫ T

0
Ltdt (6)

uuu′(T ) = A(T )uuu′(0)

If there are no eigenvalues of A(T ) with magnitude greater than
unity, it is still possible to reach a turbulent state through am-
plification of a perturbation before it decays. To consider this
we examine the ratio of perturbation kinetic energy at time τ

normalised by the initial perturbation energy. Defining kinetic
energy in the standard way,

(u,v) =
∫

Ω

u · v dV (7)

this ratio of energies, G(τ), is defined using the state transition
operator A and its adjoint A∗ as

G(τ) =
E(τ)
E(0)

=
(A(τ)u′(0),A(τ)u′(0))

(u(0),u(0))
=

(u′(0),A∗A(τ)u′(0))
(u(0),u(0)

(8)
Given that the magnitude of E(0) is arbitrary, it can be set to
unity, allowing energy growth to be determined entirely by the
eigensystem of A∗A(τ) as the largest eigenvalues correspond
to perturbations that experience maximum amplification at τ

Letting λ j and v j denote an eigenvalue and eigenvenector of
A∗A(τ) respectively, the largest value of G(τ) that can occur is
determined by the eigensystem of A∗A(τ). Once the eigenvector
for maximum amplification has been determined, the flow-field
at this time is also known through equation 4, which can be
expressed as

A(τ)v j = σ ju j. (9)

This corresponds to the singular value decomposition of A(τ).
Therefore, optimum perturbations (v j), the structure that this
develops to at τ are given by the left and right vectors in the sin-
gular value decomposition of A(τ) while the singular values σ j
correspond to the energy amplification of these perturbations at
τ. Note that vi and v j correspond respectively to pairs of optimal
initial and maximum growth perturbations, while G j(τ) = σ2

j .

Discretization

Discretization in space and time is employed within a cylin-
drical coordinate spectral element method outlined in Fourier
modal structure is assumed in the azimuthal direction of the pipe
and the spectral element mesh is employed in a single merid-
ional semi-plane that extends the length of the pipe Lz and from
the pipe axis to the outer radius. as shown in Figure 2 below.



Figure 2: Computational domain used for the transient stability
analysis, showing internal nodal points for an axial wavenum-
ber of unity and interpolating polynomial order Np = 11. Note
unequal scaling of radial and axial directions.

By assuming Fourier modal structure in the azimuthal direc-
tion, it is necessary to consider several azimuthal wavenumbers,
but these can be addressed independently owing to linearity of
(5). The perturbation is assumed periodic in the axial direction
with domain length LZ = 2πD. This allows axial wavenumbers
α = 0,1, ... to be included in the analysis for each azimuthal
wavenumber.

Transient growth analysis is implemented within a direct nu-
merical simulation (DNS) code outlined by Blackburn and
Sherwin (2004) with modifications to include linearized advec-
tion operators for both forward and backwards timestepping for
application of the joint operator A∗A. This evolution operator
is projected onto a Krylov subspace that is of low order so that
manipulation of large matrices is not required. From this pro-
jection the eigensystem of A∗A(τ) and hence v j, u j and τ j can
be determined These methods are outlined further in Barkley et
al (2008)

Results

Transient Growth for m 0-3

Transient growth maxima exhibited a strong dependence on
azimuthal wavenumber, with very little growth observed for
axisymmetric perturbations and maximum growth observed
at an azimuthal wavenumber of unity. Increasing azimuthal
wavenumbers above one provided a decline in the transient
growth, and this is reflected in figure 3.

Figure 3: Transient Growth Maxima for ūpm = 3, m = 0− 3
against Reynolds number (empty triangles m = 0 empty squares
m = 3 solid triangles m = 2 solid squares m = 1)

This may occur because axisymmetric perturbations do not have
sufficient freedom to orient themselves in the optimal configu-
ration for maximum transient growth, and this is no longer the
case for azimuthal wavenumbers 1 and above. This implies that
some azimuthal variation is required for perturbations that are
significantly amplified. With larger wavenumbers, too much
variation in the azimuthal plane is present, and viscous damping
effects severely limit the amplification of these perturbations,
and is the reason for diminishing maximum growth for larger
wavenumbers.

Although higher azimuthwal wavenumbers exhibit lower tran-
sient growth maxima, these maxima are reached over a shorter
time, resulting in the tendency for higher azimuthal wavenum-
bers to be important for the short time transient growth as shown
by figure 4. This has also been observed in the transient stability
analysis for Hagen-Poiseuille flow by (Schmid and Henning-
son 1994), for stenotic flow (Blackburn Sherwin and Barkley
2008), and for sudden expansion flows (Cantwell, Barkley and
Blackburn 2010). This again suggests that increased azimuthal
wavenumber promotes rapid transient growth, but also gives
rise to larger viscous forces that cause perturbations to decay
over a shorter times.

Figure 4: Transient Growth curves for m = 0− 3 at Re 1000,
ūpm = 3, ūred = 10 (solid line m = 1; dashed line m = 2; dotted
dash line m = 3 dotted line m = 0)

Perturbation Structures for Maximum Growth (m = 1)

Axial invariance of perturbation structures was observed for the
least stable perturbations occurring for azimuthal wavenumber
of unity at for low Reynolds numbers, with slight variation de-
veloping past a Reynolds number of approximately 1000. The
structure within the r-θ plane of the pipe was observed to be a
counter rotating vortex pair and is shown below in figure 5. The
transient stability analysis for Hagen-Poiseuille flow also iden-
tified optimal perturbations for azimuthal wavenumber of unity
with little stream-wise dependence (Schmid and Henningson
1994). Additionally, axially invariant modes have been identi-
fied as the least stable modes in the asymptotic stability analysis
of oscillatory flows (Nebauer and Blackburn 2009).

Figure 5: Optimal perturbation structure in the r− θ plane of
the pipe showing counter rotating vortex structure for Re 3500
m = 1, ūred = 10 and ūpm = 2

Figure 6 shows how this perturbation has evolved at the point
of peak energy by using contours of axial velocity . It is inter-
esting to note that while the initial perturbation was comprised
primarily radial and azimuthal flow, it develops to a state where



axial flow provides the majority of the kinetic energy. Also note
that this flow is above the threshold for axially invariant pertur-
bations.

Figure 6: Evolution of the optimal perturbation at the time of
maximum growth shown in the meridional semi-plane ūpm =
2, Re = 3500 m = 1 showing contours of axial velocity (red
parallel and blue antiparallel to the pipe axis.

Scaling with Reynolds Number

Maximum transient growth was observed to scale with
Reynolds number squared according to G(τ)max = 7×10−5Re2

and is shown in Figure 7. Kreiss et al (1993) examine bounds
for transient energy growth in sub-critical shear flows analyti-
cally, and also find a dependence on Reynolds number squared
for optimal transient energy growth. While this analysis is re-
stricted to steady flows, it still indicates that parallel shear flows
share many of their stability characteristics.

Figure 7: Transient growth curve maxima plotted against the
square of Reynolds number (k = 1, ūpm = 2)

Variation with ūred and Waveform

Transient growth maxima do not appear to be sensitive by
changes in reduced velocity from 5 to 10 or changes to
waveforms with ūpm varying from 2 to 3. Variation in ūpm
did appear to change the timescale for the evolution of these
perturbations by an integer factor of 2, and this is shown below
in figure 8. A change in the periodicity appears to have only
changed the timescale of the transient growth curves, and might
suggest that another dimensionless parameter may suggest
some form of coupling between the chosen set of dimensionless
parameters as similar effects have been observed in (Nebauer
and Blackburn 2009) for the asymptotic stability of oscillatory
flows.

Discussion and Conclusions

We have considered the transient stability analysis for pulsatile
flows in a rigid straight pipe, and found that transient growth
maxima occur for an azimuthal wavenumber of unity and that
this growth scales with Reynolds number squared, and were of-
ten several orders of magnitude greater than those considered
by Fedele et al (2004). Transient growth curves also show
that over short times higher azimuthal wavenumbers produce

Figure 8: Transient growth envelopes for variations in wave-
form and periodicity at Re 4000, m = 1 α = 1. Solid curve:
ūred = 5 ūpm = 2; dashed curve; ūred = 10 ūpm = 3 dashed curve
with x markers: ūred = 10 ūpm = 2 (curves coincident).

larger growth values, and decay more rapidly. Transient growth
dependence scaling with Reynolds number squared has been
observed in computational studies (Schmid and Henningson
1994)and also found in analytical studies (Kreiss et al 1993)
for other parallel shear flows.

Varying either the reduced velocity or waveform has little ef-
fect on the maximum transient growth observed for m = 1, and
changes to the periodicity of these flows appear to modify only
the timescale for the evolution of the transient growth curves,
and might suggest some form of coupling between the dimen-
sionless parameters used for this study. Optimum perturbations
occurred for an azimuthal wavenumber of unity and were ob-
served as counter rotating vortex pairs in the r−θ plane of the
pipe and little stream-wise variance.
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