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Abstract 

A variety of physical processes associated with the generation of 
tsunamis by two-dimensional submarine landslides in a uniform 
depth fluid are explored with a semi-analytical model based on 
linear, inviscid, irrotational wave theory. The results demonstrate 
that the maximum potential energy in the wave field is 
approximately linearly proportional to the initial acceleration of 
the landslide and inversely proportional to the relative water 
depth, provided the initial acceleration is more than an order of 
magnitude smaller than the gravitational acceleration. It is shown 
that when the landslide is moving at a constant velocity, or 
Froude number, energy can be gained by, or lost from, the wave 
field through ongoing interaction with the landslide motion.  

1. Introduction  

Tsunamis, generated by the collapse of continental shelf 
sediments, can cause significant damage to coastal infrastructure 
[1-3]. A particular hazard associated with these submarine 
landslide generated tsunamis is the very short timescale between 
the causation event and the impingement of the waves on the 
shoreline. 

Considerable research has been undertaken in the last 50 years to 
better understand the manner in which these tsunamis are 
generated. This work has been field based, experimental and 
theoretical/computational in nature (see Sue et al [4] and the 
references therein).  

Many of these studies have considered the practical problem of a 
2D or 3D landslide moving down a sloping boundary and the 
focus has been on the calibration of numerical models against 
experimental data. In this paper we consider an idealised problem 
where the landslide motion is along a horizontal boundary. This 
geometry enables us to employ a semi-analytical model that is 
computationally efficient and which provides clearer insights into 
the mechanisms by which energy is transferred from the landslide 
motion to the wave field and in particular it enables a clear 
picture of the onshore propagating wave field to be obtained. 
While this geometry is physically unrealistic most continental 
shelves have fairly shallow slopes and the proposed model could 
be seen to have predictive capability in a local sense. 

2. Mathematical model 

The physical problem to be explored is illustrated in figure 1. A 
low aspect rigid landslide moves along the bottom boundary of a 
water body of uniform depth, D.  

The model presented here is based on the assumption that the 
flow is two-dimensional, inviscid and irrotational. We will 
assume that the linear assumption is valid for free surface 
disturbances, and that the low aspect ratio of the moving 
landslide allows a similar approximation to be invoked on the 
bottom boundary. This will allow a semi-analytical technique to 

be employed to solve the governing equations.  Based on these 
assumptions the governing equations are 

                         (1) 

                         (2) 

                         (3) 

                         (4) 

                         (5) 

The function yb(x,t) specifies the shape of the bottom boundary, 
which includes the time-dependent moving landslide, and 
encapsulates the forcing for the problem; n is an outward normal 
to this boundary and vnb is its normal velocity. The linear 
assumption has been invoked for the free surface boundary 
conditions. 

We choose suitable non-dimensional variables based on the 
length of the landslide and its initial acceleration a0 (discussed in 
the next section). These are 

                         (6) 

By invoking the linear assumption for the bottom boundary 
condition so that the boundary condition is imposed on the 
horizontal boundary, these transformations yield  

                         (7) 

                         (8) 

 
Figure 1. The flow domain and the definition of the key variables. 
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                         (10) 

                         (11) 

In equations (7)-(11) the primes have been dropped for clarity. 
This non-dimensionalisation process has generated two important 
dimensionless parameters that play a key role in the physics of 
the problem. They are 

                         (12) 

the dimensionless initial acceleration and the ratio of water depth 
to landslide length respectively. 

The bottom boundary position, including the landslide, can be 
written in dimensionless form as 

                         (13) 

where u(t) can be thought of as a dimensionless local landslide 
coordinate measured from the position of its centre of mass, x0(t), 
and is defined as 

                         (14) 

f(u) is a landslide shape function, and ! is the landslide aspect 
ratio given by 

                         (15) 

Thus the normal velocity imposed on the bottom boundary is 

                         (16) 

2.1 Landslide motion 

In order to keep the problem tractable the motion of the slider 
centre of mass, x0(t), is constrained in the following way. At t = 0 
the landslide motion begins with a constant acceleration. At some 
later time, tmax, the landslide ceases to accelerate and either 
continues at a constant velocity or begins to decelerate, again at a 
constant rate.  In the former case the landslide may begin to slow, 
at a constant deceleration, at a later time denoted tdec. If the 
landslide does decelerate it comes to a halt at t = tzero. 
 
2.2 Spectral solution technique 

The solution method for this problem is based on a spectral 
decomposition of the various flow fields (see Lighthill [5]).  The 
modes in this decomposition can be written in dimensionless 
form as 

                         (17) 

where the non-dimensional wavenumber and frequency are given 
by 

                         (18) 

Solutions for the velocity potential and free surface elevation are 
assumed to be of the forms 

                         

(19) 

and 

                         (20) 

The coefficients a(k,t), b(k,t), and c(k,t) are complex and only the 
real parts of the equations (19) and (20) are required. The bottom 
boundary condition can also be decomposed in the same fashion. 
Thus we define 

                         (21) 

By applying the three boundary conditions and utilising the 
requirement that each of the Fourier modes is independent, 
equations can be obtained for the three sets of coefficients. As the 
free surface response is our primary focus only the equation for 
c(k,t) is given. This is 

                         (22) 

where the forcing function F(k,t) is defined to be 

                         (23) 

and  
                         (24) 

Note that k is treated as a parameter in equation (22), hence the 
use of ordinary derivatives.  
 
Analytical solutions to equation (22) are not readily available so 
a numerical integration technique was employed. This technique 
involved the following steps: 

1. A range of wavenumbers to be used in the integral in 
equation (20) was selected. kmax determined the smallest 
length scale resolved.  
2. An appropriate discretisation of the wave number space 
was selected. The spacing, "k, determined the largest scale 
resolved by the model and hence determined the space scale 
over which the solution repeated. 
3. A 4th order Runge-Kutta scheme was used to integrate 
equation (22) for each value of k. 
4. Equation (20) was integrated numerically to provide 
!(x,t). 
 

While a full analytical solution was not possible the numerical 
integration of equation (22) was computationally substantially 
more efficient than a full numerical solution using the boundary 
element method. In addition, while not described here, this 
spectral solution enabled the wave field to be separated into 
forward and backward propagating wave components, as 
illustrated in Figures 4 and 5. 
 
3. Results 

3.1 Dependence on landslide shape 

The dependence of the wave field on the shape of the landslide 
was first explored. Four separate shapes, all symmetrical about 
the centre of the landslide, were incorporated into the forcing 
function F(x,t) – a sawooth, a half cosine, a half cosine squared 
and a quartic. Figure 2 shows that the wave fields generated for 
the various shapes became indistinguishable when the volume of 
fluid displaced by the landslide was the same – a result with 
important practical implications. For the remainder of this study a 
landslide in the shape of a sawtooth was used.  
 
 



  
Figure 2. The wave fields generated by the four different landslide shapes 
for a landslide undergoing constant acceleration. t = 3.53, " = 1,  # = 
0.152 and $ = 0.1. The volumes of the landslides were the same. 

 

 
Figure 3. Wave field generated by a landslide undergoing a constant 
acceleration until t = 1, a constant velocity until t = 10 and then a 
deceleration until t = 11. The model parameters are # = 1,  $ = 0.1 and ! = 
0.1. The colour indicates the free surface amplitude. The fine solid black 
line corresponds to the track of the landslide. 

3.2 General observations 

Figure 3 presents the wave field generated by a landslide 
suffering an initial acceleration, followed by a period of constant 
velocity and finally a deceleration before coming to rest. In this 
case the constant velocity regime corresponded to a landslide 
Froude number, based on the landslide speed and the speed of a 
long wave, that was sub-critical. The key characteristics of such 
wave fields are illustrated. The initial acceleration causes a free 
wave, in the form of a crest to propagate ahead of the landslide, 
while a smaller amplitude trough propagates in the opposite 
direction. Above the landslide, while it is in motion, a trough is 
trapped (as would be found in a steady open channel flow at sub-
critical Froude number). Due to the dispersive nature of the 
waves the energy in the forward and backward propagating wave 
packets gradually spreads and additional crests and troughs are 
created at the rear of these packets. For the rightward propagating 
wave packet these waves propagate past, and away from, the 
landslide. Once the landslide halts the trapped trough is free to 
propagate, and the deceleration of the landslide generates two 
new wave packets one travelling forward and one backward. The 
backward propagating packet is distinguished by a leading crest 
caused by the deceleration of the landslide.  

Figures 4 and 5 provide spatial surface profiles, at t = 6 and t = 
13, for the same simulation as that illustrated in figure 3. The two 
propagating wave packets (identified on either side of x = 0) are 
clearly seen in figure 4. An interesting feature of the wave field, 
while the landslide is still in motion, is the non-zero mass and 
momentum fluxes within each of the two wave packets. The right 
propagating packet is transporting positive mass in the positive x 
direction, while the left propagating waves are carrying a 

negative mass (relative to the undisturbed free surface) in that 
direction. This result is perhaps unexpected for a solution 
obtained from linear wave theory, and is more consistent with the 
non-linear theory required to generate solitary waves. It is our 
hope to characterise and quantify these fluxes in future research.   
Figure 5 presents the free surface profile after the landslide has 
stopped. The deceleration of the landslide has rebalanced the 
mass and momentum fluxes by sending a positive mass pulse 
travelling in the negative x direction (as seen just to the right of 
the origin).  Now both wave packets possess zero mass and 
momentum fluxes. 

 
Figure 4. Wave field at t = 6 for the simulation described in Fig 3.  The 
landslide is at x = 5.5, coinciding with the position of the largest trough – 
the trapped wave. The method by which the backward and forward 
propagating wave fields are obtained are not discussed in the present 
paper. 

 
Figure 5. Wave field at t = 13 for the simulation described in Fig 3.  The 
landslide is stationary at x = 10. 

3.3 $ and # dependence 

Clearly two of the most important parameters governing the free 
surface response to the motion of the submarine landslide are the 
dimensionless initial acceleration, #, and the dimensionless 
depth, ". One measure of the intensity of the waves generated by 
the subsurface motion is the total potential energy possessed by 
the wave field. Figure 6 presents the dimensionless wave 
potential energy as a function of dimensionless depth, for a 
variety of initial accelerations. The simulations reported in this 
figure all included a period of constant acceleration, followed by 
a period of constant velocity, and finally a period of constant 
deceleration. To be able to compare the results in a meaningful 
way the Froude number of the landslide during the constant 
velocity phase was 0.25 in all simulations. In addition the 
magnitude of the deceleration matched that of the acceleration. 

The maximum potential energy is multiplied by " in figure 6. 
Over the majority of the depth range the scaled potential energy 
is effectively constant for each of the acceleration values. As the 
acceleration increases in magnitude the range over which the 
scaled potential energy is constant decreases and the scaled 
energy drops substantially for small depth ratios. 



The figure also demonstrates that, while increasing the initial 
acceleration increases the potential energy contained in the wave 
field for small values of initial acceleration, this trend does not 
continue to high accelerations, as illustrated by the small increase 
in potential energy when the initial acceleration is doubled from 
0.2 to 0.4. In practice landslide accelerations are likely to be 
considerably less than the gravitational acceleration and thus the 
almost linear dependencies on # and 1/" are likely to be relevant 
for field applications.  

As explained in the next section the energy content in the wave 
field is strongly dependent on the Froude number of the landslide 
in the constant velocity phase. 

 
Figure 6. The dependence of the dimensionless wave potential energy on 
the two model parameters, the dimensionless acceleration, #, and the 
dimensionless depth, ". 

3.4 Wavefield–landslide interaction 

The Proudman resonance [6] is a well understood phenomenon 
that occurs when a travelling atmospheric pressure disturbance 
propagates at the same speed as a long wave on the fluid body 
over which it moves. Because of the locking of the forcing to the 
wave the pressure field has the ability to continually pump 
energy into the wave field, yielding large amplitude waves. The 
pressure field surrounding a moving submarine landslide can 
perform a similar action on the wave field above. Figure 7 
illustrates this effect for a landslide again undergoing a constant 
acceleration, followed by a constant velocity phase and 
ultimately a constant deceleration. The landslide Fr during the 
constant velocity phase was varied. The maximum potential 
energy of the wave field is plotted as a function of landslide Fr. 
The maximum potential energy divided by the Fr2 is also plotted. 
This normalisation is intended to reference the wave potential 
energy to the maximum landslide kinetic energy. A resonance 
peak near Fr = 1 is clear in the potential energy plot, although 
this peak shifts to slightly lower Fr in the normalised case.  
 

 
Figure 7. The dependence of the maximum dimensionless wave potential 
energy on the landslide Froude number for a simulation with # = 0.1, and 
# = 2. 

This resonance phenomenon is associated with ongoing 
interactions between the forcing, the pressure field surrounding 
the landslide, and the wave field. This interaction is always 

present and produces interesting effects when the landslide is 
moving at a constant velocity for a significant period. For a sub-
critical landslide Fr the crests and troughs in the dispersed wave 
field continually overtake the landslide as illustrated in figure 3. 
When a crest passes over a low pressure region, such as that 
above the moving landslide, the pressure field does negative 
work on the wave field and the PE decreases. The opposite effect 
occurs when a trough passes over a low pressure region. This 
effect is illustrated in figure 8. Here the wave potential energy is 
plotted against time for a landslide that has accelerated to a 
constant velocity at t = 5 and remained at a constant Fr of 0.25 
thereafter. The significant energy exchanges between landslide 
and wave field are clear from the oscillations present after t = 5. 
 

 
Figure 8. The time varying wave potential energy of a landslide that 
undergoes a constant acceleration (# = 0.05) until  t = 5. Subsequently the 
landslide velocity and Froude number are constant. Fr = 0.25, and # = 4. 

 
4. Conclusions 

A computationally efficient mathematical model of tsunami 
generated by submarine landslides along a horizontal bottom, 
based on a spectral decomposition of the wave field and forcing, 
has been presented. The results demonstrate that the conversion 
of landslide kinetic energy to wave field potential energy is 
strongly dependent on the initial acceleration of the landslide, the 
relative depth of the fluid layer and the Froude number of the 
landslide. Complex interactions between the wave field and 
landslide have been shown to have the potential to cause energy 
transfer both into, and out of, the wave field. 
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