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Abstract

A stochastic spectral subgrid model for the Large Eddy Sim-
ulation (LES) of a quasi-geostrophic atmospheric flow is pre
sented, with particular focus on the influence of resolution
The approach of Frederiksen & Kepert [3] is adopted, where
the subgrid scales are represented by a drain-dissipatéen m
trix plus a stochastic backscatter term. Two LES variangs ar
presented: an anisotropic parameterisation, in which tiee s
grid model is dependent on the zonal and total wavenumbers;
and an isotropic parameterisation only dependent on tlaé tot
wavenumbers. The terms required for the subgrid parameteri
sations are determined from higher resolution Direct Nucaér
Simulations (DNSs). Two DNSs are presented, one with 126
zonal and total wavenumbers, and a second with 252 wavenum-
bers. The LES simulations have half the wavenumbers as com-
pared to the respective DNS data sets. For both resoluti@ns t
LES variants agree with the kinetic energy spectra from the
DNS very well. As the LES resolution increases the subgrid
eddy viscosity and stochastic backscatter both decrease.

Introduction

With the current level of computer hardware technologysit i
not possible in a reasonable amount of time to simulate the at
mosphere or ocean by resolving all of the scales of motion. In
geophysical fluid dynamics a DNS is understood to be a highly
resolved simulation with hyper-viscosity terms accountiar

the unresolved scales. In a LES the large structures are re-
solved and the remaining small scales are approximated by a
subgrid parameterisation. The first such parameterisates

the Smagorinsky eddy viscosity model [8], in which the sub-
grid scales were related to the local strain rate via a sisygte-

ified parameter. The next major development in this area was
the Dynamic Smagorinsky model of Germano et. al. [4], where
the eddy viscosity was calculated from the scales resolved i
test filter at each time step. Both of these models rely on a de-
terministic relationship between the resolved and sulsyrides

of motion. A stochastic version of the Smagorinsky model was
the first proposed by Leith [6].

With application to barotropic atmospheric flows, Frederik
sen & Davies [2] and Frederiksen [1] developed a turbulence
closure with wavenumber-dependent dissipation (relaietde
eddy viscosity) and stochastic backscatter terms, withpea-s
ified parameters needed. In an effort to widen the appliitgbil

of the closure, Frederiksen & Kepert [3] developed a means by
which the dissipation and stochastic backscatter termisl dxz
determined from a reference DNS data set. This is the apiproac
adopted here. The present study specifically builds upon the
work of Zidikheri & Frederiksen [9], analysing a baroclirat-
mospheric flow configuration. In Zidikheri & Frederiksen [9]
one DNS was performed with 126 wavenumbers, and LES sim-
ulations were undertaken with truncation wavenumbers of 63
and 31. In the present study two DNS data sets are produced
with truncation wavenumbers of 252 and 126. LES simulations

associated with each DNS data set are performed such that the
LES truncation wavenumber is half of the respective DNS-trun
cation wavenumber. This will illustrate how the subgridgrar
eterisation changes with resolution.

The paper is organised as follows. In the following secttum t
quasi-geostrophic potential vorticity equation (QGPV&EDt-
lined, which is solved to generate the DNS data sets. The LES
version of the QGPVE is then presented, along with the detail
surrounding the stochastic modelling of the subgrid scdlbe
kinetic energy spectra from the DNS are then compared to the
spectra from both anisotropic and isotropic variants ofLtB8.

Direct Numerical Simulation of the Baroclinic Quasi-
Geostrophic Equations

The numerical integration of the QGPVE is a useful and rela-
tively computationally inexpensive means of simulatingnat
spheric flows. The equation is derived on the basis of approx-
imate geostrophic balance, which is the balance between the
pressure gradient and Coriolis forces. The QGPVE is derived
from the variable density form of the Navier-Stokes equetio
(NSE) in spherical coordinates, and subject to rotatione Th
thickness of the atmosphere is thin in comparison with the ra
dius of the Earth, and the vertical velocity)(is small in com-
parison to the zonaluj and meridional () velocities. This al-
lows one to represent the horizontal flow field by the stream-
function Y. Assuming that the flow is in hydrostatic balance,
0p/0z = —pg, wherep is a stratified density, anglis the grav-
itational constant. This relationship allows one to repléte
vertical coordinatez, with a pressure coordinatp. In the
present study two discrete vertical levels are used With1
representing the upper level at 250hRa-(10.4km), andj = 2

the lower level at 750hPa & 2.5km). This model captures the
important mechanisms of barotropic and baroclinic indit#ks.

The field variables are non-dimensionalised by the raditiseof
Earth @ = 6371km) as a length scale, and the inverse of the
Earth’s angular velocity® = 7.292x 10-5s1) as a time scale.
They are expanded into spherical harmonics with zonal (lon-
gitudinal) wavenumbem, and total wavenumban. Note the
latitudinal (meridional) wavenumber is— m. For convenience,
instead of solving for the streamfunction, one solves ferré
duced potential vorticity spectral coefficients,

1)

where the superscrigton the flow variables denotes the level,
and ZJn = —n(n+ 1)Phn are the spectral coefficients of the
vorticity. F_ is a layer coupling parameter, which is inversely
proportional to the temperature difference between theléwo
els, and related to the Rossby radius of deformationggy =
1/+/2F_. The evolution ofyhn is then given by
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where, the summations are over the triangular truncated
wavenumber set

T=[pqrs|-T<p<T,|p<q<T,
—T<r<T,|r|<s<T],

©)

MR are the interac-

with T the DNS truncation wavenumbengs
tion coefficients given by
dr}
rPr—q) du,

1 dF
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whereP(1) are the orthonormal Legendre functions [2]. Since
we assigrP, ™ = PP, this means)’ s = gfs andy! ,, = Wi,
and the superscriptis the complex conjugate operation. Also t
denotes the Hermitian conjugate for vectors and matrighg. ~
is the climate to which the model is driven, via the relaxatio
parametek. The bare dissipation operator

mpr
Kngs =

“4)

Dy(mn) = a) +v[n(n+1)]* +iwmn, ©)
where wmn = —Bm/(n(n+ 1)) is the the Rossby wave fre-
guency, and the Coriolis parameter. Under the chosen non-
dimensionalisatiorB = 2. al are the drag terms, and) are
the hyper-viscosities, which account for the unresolveslesc

in the DNS.

The values ofx! andvé are selected so that in the inertial range
the log of kinetic energy decreases with the log of the waxenu
ber according to an approximate linear gradient 8f to be rep-
resentative of two-dimensional turbulence [5]. This appfois
deemed adequate as the resolved horizontal scales of motion
are large in comparison to the vertical domain size. In &afdit
according to the measurements of [7] th&/3 logarithmic gra-
dient associated with three-dimensional turbulence igvesi

at wavelengths less than 300km. In the present study only the
smallest resolved wavelength of approximately 160km ibiwit

this range.

The time integration of (2), produces the data required to de
termine the subgrid dissipation and backscatter termsssacg
for the LES. Details on this procedure are presented in the fo
lowing section.

Stochastic modelling of the subgrid scales in the Large
Eddy Simulations

The LES is truncated further as compared to the DNS, with the
wavenumbers confined to the set

R=[p,ars|-TR<p<Tr,|p|<q<Tr,
—Tr<r<Tgr,|r|<s<TRr], (6)
whereTg is the LES truncation wavenumber aifgd < T. The
subgrid wavenumber set can then be define8 asT —R. To
facilitate a discussion on the decomposition of these sazfle
motion, for a given wavenumber pair we ptequal the trans-
pose of(gh,, d4,n)- This vector notation allows one to express

Ge(t) =g (1) +a%(t) (7)

whereq; is the tendency (or time derivative) gf th is the
tendency of the resolved scales where all triadic intepastin-
volve wavenumbers less thdp, and consequently no parame-
terisation is requiredgS, is the remaining subgrid tendency in
which at least one wavenumber component involved in the tri-
adic interactions is greater tha@p. It is the latter tendency that
must be modelled.

The subgrid tendency can be further decomposed such that

(8)

qst

) =F+a2(t) ,
wheref = qist is the time averaged subgrid tendency, apd
the fluctuating component. In the present stiidydetermined
directly from the DNS data, and the fluctuating component is
represented by the stochastic equation

~

Go(t) = —Da G(t) +f(t) | ©)
whereDy is the subgrid drain dissipation matrixjs the fluctu-

ating component of, andf is a random forcing vector. Again
as the present simulations have two vertical levels, fovargi

wavenumber paiDyq is a time independent 2 2 matrix, andf
is a time dependent 2 element column vector.

After some manipulation of (94 is determined by evaluating

The angled brackets denote ensemble averaging, with each en
semble member determined by shifting the initial titpeand

the final timet =ty + 1 forward by one timestep is chosen to
capture the average subgrid contribution to the resolvalbsc

Dy

-1
ta§<o>a*<to>do> < tta<o>af<to>do> . (10

to

The model of the stochastic backscatter téisdetermined by
first calculating the non-linear noise covariance matnizegiby

F=(fna'm)+(an o) . (11)
By again manipulating (9)F can be determined from
(@oa)+Ena )=
-0g (av @) - (@va'm) pa'+F. @2

given thatDy has been previously calculated. It is clear from
(12) thatF is Hermitian, which by definition has real eigenval-
ues and can be decomposed into

}PT,

whereA1 and A, are the eigenvalues &, andP is a unitary
matrix whose columns consist of the associated eigenwector

The instantaneous valuesfare now related to the eigenvalues

and eigenvectors df. First we assume thatis a white noise
process such that

A O

F:P{ 0 A

13)

<?(t)?*(t’)> —F3(t—t), (14)
the discrete time form of which is
<?(t)?f(t’)> —F % , (15)

whereAt =t’ —t is the time step size. Using the eigenvalue
decomposition in (13) one can then express the instantaneou

values off by

Ty L VALT1(t)
o= mp( Az ra(t) > ! (16)

wherery andr, are standard random numberAs with Gaussian
distributions. Importantly the proposed form fofn (16) sat-
isfies (15). The eigenvalues, however, can sometimes be less
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Figure 1: Anisotropic subgrid coefficients for thd.26 data set
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Figure 2: Isotropic subgrid coefficients: @g[vi(n)]; and (b)Re[F1(n)]. The legend in (a) is applicable to both figures.

than zero due to sampling error. In this case, a cut-off total
wavenumbenc is defined as the highest total wavenumber with
non-negative eigenvalues for afl. For all wavenumber pairs
with n < n, f is set to zero and the associated valueB gfire
replaced with those of the net dissipation

b =—(a% a'®) (@ua' )™ @an
Note the eddy viscosity is related to the dissipation viaeke
pressiorvg(m,n) = Dg(m,n)/(n(n+1)).

Finally the equation solved for the anisotropic LES is
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over the wavenumber sdR. As presented in (18), each
wavenumber pair has a uniqg andf. For the isotropic LES,
the matrice®y andF are averaged over the zonal wavenumbers
m, so that they are now only functions of the total wavenumbers
n. The isotropic eigenvalues are then calculated fromnthe
averaged- matrix, and the random forcing function is conse-
quently only dependent on The isotropised versions &y
andF are presented in the following section.

Results

Two resolution cases are analysed denoted b6 andT 252,
referring to the DNS truncation wavenumbefisted in table 1.
The dissipation and stochastic backscatter terms recainset-
form the LES are derived from these data sets. Anisotropic an
isotropic subgrid scale models are undertaken, with the LES
truncation wavenumbefg also listed in table 1. For a given
case, the samat and the number of time stephlj are used
for the DNS and LES variants to provide a direct comparison
between the kinetic energy spectra accumulated over the tim
period. In all cases the simulations are driven tovqi,vaith a

the relaxation parameter af = 1061, q}m consists of two
large easterly moving jets; one in the mid latitudes of each
hemisphere. Further details on the structurelgfcan be found

in [9]. To be representative of atmospheric flows the layer co
pling parameter in Sl units | = 2.5 x 10 12m2, with rres=
4.47 x 10°m and a wavelength off2gres = 2.81x 10°m. The
associated non-dimensionalised Rossby wavenumbggis=
a/rros~ 14. ltis clear that for all simulations presented within,
the large scale Rossby waves are resolveirags< TR < T.
Note ocean simulations are an order of magnitude more com-
putationally challenging with a largéges~ 140.

The anisotropic subgrid dissipation coefficients are dated
from the DNS data using (10) with= 24At in all cases. For
the T 126 data set, the amplitude of the real component of eddy
viscosityvél(m, n) is illustrated in Fig. 1(a), and the real com-
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Figure 3: Comparison of the kinetic energy spectra on Ie\(éi,%]): for (a) T126; and (b)T252. The top spectra in each graph is a
comparison between the DNS (dotted line) and the isotroi8.L.The bottom spectra is a comparison between the DNS asatamic

LES, with both spectra shifted down one decade for clarity.

| T126 | T252
T 126 252
TR 63 126
Nt 40000 | 80000
At (sec)| 450 225

Table 1: Numerical parameters for data SEt26 andT 252.

ponent of the non-linear noise covariance coeffickeht(m, n)

is presented in Fig. 1(b). Both of these coefficients geheral
increase witm, and forn > 55 they are largely independent of
m. The eddy viscosity is isotropised wiRe[v3!(n)] shown

in Fig. 2(a), and exhibits a cusp like shape approaching the
LES truncation wavenumbdk. The isotropised version of the
T252 data set is also illustrated in Fig. 2(a), with a lower imax
mum value afr. The non-linear noise covariance is isotropised
with Re[F%(n)] illustrated in Fig. 2(b) for both th&126 and
T252 data sets. This figure indicates that the magnitude of
Re[F1}(n)] also decreases with resolution.

A comparison is now made between the time ameveraged
kinetic energy spectra on level EE,-K) resulting from the DNS,
anisotropic LES and isotropic LEE& is illustrated in Fig. 3(a)
for T126 and in Fig. 3(b) foll 252. The approximate wavenum-
ber of the Rossby wavegos~ 14) is indicated on each graph.
The appropriate DNS truncation wavenum@Berand the LES
truncation wavenumberr are also labelled. These figures il-
lustrate that the spectra exhibit excellent agreementtatries-
olutions. The level 2 spectra is not presented within; harev
the agreement is equally as impressive. Typical of thesestgp
simulations, there is an upward curve at the high wavenumber
end of the DNS spectra. This feature, however, has not hedder
the ability to illustrate the subgrid parameterisationgess.

Concluding remarks

DNS data from a two level quasi-geostrophic atmospheric
model has been compared to associated LES simulations with
stochastic subgrid parameterisations. The simulatioms per-
formed at two resolutions with DNS truncated wavenumbers of
126 and 252 in the periodic directions. The associated LES
simulations were performed with half the number of wavenum-
bers in each direction. Two LES variants were undertaken for
both resolutions, an anisotropic and an isotropic closukk.

of the terms required for the subgrid models were deriveohfro
the DNS data sets. The maximum valuew$f(n) andF1(n)

were found to decrease as resolution increased. The DNS and
both LES variants had very similar kinetic energy spectize T

simpler isotropic closure is sufficient because the arogatr
coefficients in figure 1 are similar for ath at a givenn. This
may or may not be the case when topology is added.

The subgrid parameterisation method presented within is
equally applicable to General Circulation Models, and gane
studies on three-dimensional turbulence.
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