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Abstract

A stochastic spectral subgrid model for the Large Eddy Sim-
ulation (LES) of a quasi-geostrophic atmospheric flow is pre-
sented, with particular focus on the influence of resolution.
The approach of Frederiksen & Kepert [3] is adopted, where
the subgrid scales are represented by a drain-dissipation ma-
trix plus a stochastic backscatter term. Two LES variants are
presented: an anisotropic parameterisation, in which the sub-
grid model is dependent on the zonal and total wavenumbers;
and an isotropic parameterisation only dependent on the total
wavenumbers. The terms required for the subgrid parameteri-
sations are determined from higher resolution Direct Numerical
Simulations (DNSs). Two DNSs are presented, one with 126
zonal and total wavenumbers, and a second with 252 wavenum-
bers. The LES simulations have half the wavenumbers as com-
pared to the respective DNS data sets. For both resolutions the
LES variants agree with the kinetic energy spectra from the
DNS very well. As the LES resolution increases the subgrid
eddy viscosity and stochastic backscatter both decrease.

Introduction

With the current level of computer hardware technology, it is
not possible in a reasonable amount of time to simulate the at-
mosphere or ocean by resolving all of the scales of motion. In
geophysical fluid dynamics a DNS is understood to be a highly
resolved simulation with hyper-viscosity terms accounting for
the unresolved scales. In a LES the large structures are re-
solved and the remaining small scales are approximated by a
subgrid parameterisation. The first such parameterisationwas
the Smagorinsky eddy viscosity model [8], in which the sub-
grid scales were related to the local strain rate via a singlespec-
ified parameter. The next major development in this area was
the Dynamic Smagorinsky model of Germano et. al. [4], where
the eddy viscosity was calculated from the scales resolved in a
test filter at each time step. Both of these models rely on a de-
terministic relationship between the resolved and subgridscales
of motion. A stochastic version of the Smagorinsky model was
the first proposed by Leith [6].

With application to barotropic atmospheric flows, Frederik-
sen & Davies [2] and Frederiksen [1] developed a turbulence
closure with wavenumber-dependent dissipation (related to the
eddy viscosity) and stochastic backscatter terms, with no spec-
ified parameters needed. In an effort to widen the applicability
of the closure, Frederiksen & Kepert [3] developed a means by
which the dissipation and stochastic backscatter terms could be
determined from a reference DNS data set. This is the approach
adopted here. The present study specifically builds upon the
work of Zidikheri & Frederiksen [9], analysing a baroclinicat-
mospheric flow configuration. In Zidikheri & Frederiksen [9]
one DNS was performed with 126 wavenumbers, and LES sim-
ulations were undertaken with truncation wavenumbers of 63
and 31. In the present study two DNS data sets are produced
with truncation wavenumbers of 252 and 126. LES simulations

associated with each DNS data set are performed such that the
LES truncation wavenumber is half of the respective DNS trun-
cation wavenumber. This will illustrate how the subgrid param-
eterisation changes with resolution.

The paper is organised as follows. In the following section the
quasi-geostrophic potential vorticity equation (QGPVE) is out-
lined, which is solved to generate the DNS data sets. The LES
version of the QGPVE is then presented, along with the details
surrounding the stochastic modelling of the subgrid scales. The
kinetic energy spectra from the DNS are then compared to the
spectra from both anisotropic and isotropic variants of theLES.

Direct Numerical Simulation of the Baroclinic Quasi-
Geostrophic Equations

The numerical integration of the QGPVE is a useful and rela-
tively computationally inexpensive means of simulating atmo-
spheric flows. The equation is derived on the basis of approx-
imate geostrophic balance, which is the balance between the
pressure gradient and Coriolis forces. The QGPVE is derived
from the variable density form of the Navier-Stokes equations
(NSE) in spherical coordinates, and subject to rotation. The
thickness of the atmosphere is thin in comparison with the ra-
dius of the Earth, and the vertical velocity (w) is small in com-
parison to the zonal (u) and meridional (v) velocities. This al-
lows one to represent the horizontal flow field by the stream-
function ψ. Assuming that the flow is in hydrostatic balance,
∂p/∂z=−ρg, whereρ is a stratified density, andg is the grav-
itational constant. This relationship allows one to replace the
vertical coordinatez, with a pressure coordinatep. In the
present study two discrete vertical levels are used withj = 1
representing the upper level at 250hPa (z≈ 10.4km), andj = 2
the lower level at 750hPa (z≈ 2.5km). This model captures the
important mechanisms of barotropic and baroclinic instabilities.

The field variables are non-dimensionalised by the radius ofthe
Earth (a = 6371km) as a length scale, and the inverse of the
Earth’s angular velocity (Ω = 7.292×10−5s-1) as a time scale.
They are expanded into spherical harmonics with zonal (lon-
gitudinal) wavenumberm, and total wavenumbern. Note the
latitudinal (meridional) wavenumber isn−m. For convenience,
instead of solving for the streamfunction, one solves for the re-
duced potential vorticity spectral coefficients,

q j
mn= ζ j

mn+(−1) j FL

(
ψ1

mn−ψ2
mn

)
, (1)

where the superscriptj on the flow variables denotes the level,
and ζ j

mn = −n(n+ 1)ψ j
mn are the spectral coefficients of the

vorticity. FL is a layer coupling parameter, which is inversely
proportional to the temperature difference between the twolev-
els, and related to the Rossby radius of deformation byrRos=

1/
√
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where, the summations are over the triangular truncated
wavenumber set

T = [ p,q, r,s |−T≤ p≤ T , |p| ≤ q≤ T ,

−T≤ r ≤ T , |r| ≤ s≤ T ] , (3)

with T the DNS truncation wavenumber.Kmpr
nqs are the interac-

tion coefficients given by
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wherePm
n (µ) are the orthonormal Legendre functions [2]. Since

we assignP−m
n = Pm

n , this meansq j
−rs = q j∗

rs andψ j
−pq = ψ j∗

pq,
and the superscript∗ is the complex conjugate operation. Also †
denotes the Hermitian conjugate for vectors and matrices. ˜q j

mn
is the climate to which the model is driven, via the relaxation
parameterκ. The bare dissipation operator

D j
0(m,n) = α j +ν j

0[n(n+1)]4+ iωmn , (5)

where ωmn = −Bm/(n(n+ 1)) is the the Rossby wave fre-
quency, andB the Coriolis parameter. Under the chosen non-
dimensionalisationB = 2. α j are the drag terms, andν j

0 are
the hyper-viscosities, which account for the unresolved scales
in the DNS.

The values ofα j andν j
0 are selected so that in the inertial range

the log of kinetic energy decreases with the log of the wavenum-
ber according to an approximate linear gradient of−3, to be rep-
resentative of two-dimensional turbulence [5]. This approach is
deemed adequate as the resolved horizontal scales of motion
are large in comparison to the vertical domain size. In addition,
according to the measurements of [7] the−5/3 logarithmic gra-
dient associated with three-dimensional turbulence is observed
at wavelengths less than 300km. In the present study only the
smallest resolved wavelength of approximately 160km is within
this range.

The time integration of (2), produces the data required to de-
termine the subgrid dissipation and backscatter terms necessary
for the LES. Details on this procedure are presented in the fol-
lowing section.

Stochastic modelling of the subgrid scales in the Large
Eddy Simulations

The LES is truncated further as compared to the DNS, with the
wavenumbers confined to the set

R = [ p,q, r,s |−TR ≤ p≤ TR , |p| ≤ q≤ TR ,

−TR ≤ r ≤ TR , |r| ≤ s≤ TR ] , (6)

whereTR is the LES truncation wavenumber andTR < T. The
subgrid wavenumber set can then be defined asS = T−R. To
facilitate a discussion on the decomposition of these scales of
motion, for a given wavenumber pair we letq equal the trans-
pose of(q1

mn,q
2
mn). This vector notation allows one to express

qt(t) = qR
t(t)+qS

t(t) , (7)

whereqt is the tendency (or time derivative) ofq. qR
t is the

tendency of the resolved scales where all triadic interactions in-
volve wavenumbers less thanTR, and consequently no parame-
terisation is required.qS

t is the remaining subgrid tendency in
which at least one wavenumber component involved in the tri-
adic interactions is greater thanTR. It is the latter tendency that
must be modelled.

The subgrid tendency can be further decomposed such that

qS
t(t) = f+ q̂S

t (t) , (8)

wheref ≡ qS
t is the time averaged subgrid tendency, andq̂S

t
the fluctuating component. In the present studyf is determined
directly from the DNS data, and the fluctuating component is
represented by the stochastic equation

q̂S
t (t) =−Dd q̂(t)+ f̂(t) , (9)

whereDd is the subgrid drain dissipation matrix,q̂ is the fluctu-
ating component ofq, andf̂ is a random forcing vector. Again
as the present simulations have two vertical levels, for a given
wavenumber pairDd is a time independent 2×2 matrix, and̂f
is a time dependent 2 element column vector.

After some manipulation of (9),Dd is determined by evaluating

Dd =−
〈∫ t

t0
q̂S

t (σ)q̂
†(t0)dσ

〉 〈∫ t

t0
q̂(σ)q̂†(t0)dσ

〉−1

. (10)

The angled brackets denote ensemble averaging, with each en-
semble member determined by shifting the initial timet0 and
the final timet = t0+ τ forward by one timestep.τ is chosen to
capture the average subgrid contribution to the resolved scales.

The model of the stochastic backscatter termf̂ is determined by
first calculating the non-linear noise covariance matrix given by

F =
〈

f̂(t) q̂†(t)
〉
+
〈

q̂(t) f̂†(t)
〉

. (11)

By again manipulating (9),F can be determined from
〈

q̂S
t (t) q̂†(t)

〉
+
〈

q̂(t) q̂S†
t (t)

〉
=

−Dd

〈
q̂(t) q̂†(t)

〉
−
〈

q̂(t) q̂†(t)
〉

Dd
†+F , (12)

given thatDd has been previously calculated. It is clear from
(12) thatF is Hermitian, which by definition has real eigenval-
ues and can be decomposed into

F = P
[

λ1 0
0 λ2

]
P† , (13)

whereλ1 and λ2 are the eigenvalues ofF, andP is a unitary
matrix whose columns consist of the associated eigenvectors.
The instantaneous values off̂ are now related to the eigenvalues
and eigenvectors ofF. First we assume that̂f is a white noise
process such that

〈
f̂(t) f̂†(t ′)

〉
= F δ(t − t ′) , (14)

the discrete time form of which is
〈

f̂(t) f̂†(t ′)
〉
= F

1
2∆t

, (15)

where∆t = t ′ − t is the time step size. Using the eigenvalue
decomposition in (13) one can then express the instantaneous
values of̂f by

f̂(t) =
1√
2∆t

P
( √

λ1 r1(t)√
λ2 r2(t)

)
, (16)

wherer1 and r2 are standard random numbers with Gaussian
distributions. Importantly the proposed form off̂ in (16) sat-
isfies (15). The eigenvalues, however, can sometimes be less
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Figure 1: Anisotropic subgrid coefficients for theT126 data set: (a)|Re
[
ν11

d (m,n)
]
|; and (b)Re

[
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]
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Figure 2: Isotropic subgrid coefficients: (a)Re
[
ν11

d (n)
]
; and (b)Re

[
F11(n)

]
. The legend in (a) is applicable to both figures.

than zero due to sampling error. In this case, a cut-off total
wavenumbernc is defined as the highest total wavenumber with
non-negative eigenvalues for allm. For all wavenumber pairs
with n< nc, f̂ is set to zero and the associated values ofDd are
replaced with those of the net dissipation

Dn =−
〈

q̂S
t(t) q̂†(t)

〉 〈
q̂(t) q̂†(t)

〉
−1 . (17)

Note the eddy viscosity is related to the dissipation via theex-
pressionνννddd(m,n) = Dd(m,n)/(n(n+1)).

Finally the equation solved for the anisotropic LES is

∂q j
mn

∂t
= i ∑

pq
∑
rs

Kmpr
nqs ψ j

−pqq j
−rs+κ(q̃ j

mn−q j
mn)−D j

0(m,n)ζ j
mn

−
2

∑
l=1

D jl
d (m,n) q̂l

mn+ f̂ j
mn+ f

j
mn , (18)

over the wavenumber setR. As presented in (18), each
wavenumber pair has a uniqueDd and̂f. For the isotropic LES,
the matricesDd andF are averaged over the zonal wavenumbers
m, so that they are now only functions of the total wavenumbers
n. The isotropic eigenvalues are then calculated from them
averagedF matrix, and the random forcing function is conse-
quently only dependent onn. The isotropised versions ofDd
andF are presented in the following section.

Results

Two resolution cases are analysed denoted byT126 andT252,
referring to the DNS truncation wavenumberT listed in table 1.
The dissipation and stochastic backscatter terms requiredto per-
form the LES are derived from these data sets. Anisotropic and
isotropic subgrid scale models are undertaken, with the LES
truncation wavenumberTR also listed in table 1. For a given
case, the same∆t and the number of time steps (Nt) are used
for the DNS and LES variants to provide a direct comparison
between the kinetic energy spectra accumulated over the time
period. In all cases the simulations are driven toward ˜q j

mn with a
the relaxation parameter ofκ = 10−6s-1. q̃ j

mn consists of two
large easterly moving jets; one in the mid latitudes of each
hemisphere. Further details on the structure of ˜q j

mn can be found
in [9]. To be representative of atmospheric flows the layer cou-
pling parameter in SI units isFL = 2.5×10−12m-2, with rRos=
4.47×105m and a wavelength of 2πrRos= 2.81×106m. The
associated non-dimensionalised Rossby wavenumber iskRos=
a/rRos≈ 14. It is clear that for all simulations presented within,
the large scale Rossby waves are resolved askRos < TR < T.
Note ocean simulations are an order of magnitude more com-
putationally challenging with a largerkRos≈ 140.

The anisotropic subgrid dissipation coefficients are calculated
from the DNS data using (10) withτ = 24∆t in all cases. For
theT126 data set, the amplitude of the real component of eddy
viscosityν11

d (m,n) is illustrated in Fig. 1(a), and the real com-
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Figure 3: Comparison of the kinetic energy spectra on level 1(E1
K): for (a) T126; and (b)T252. The top spectra in each graph is a

comparison between the DNS (dotted line) and the isotropic LES. The bottom spectra is a comparison between the DNS and anisotropic
LES, with both spectra shifted down one decade for clarity.

T126 T252
T 126 252
TR 63 126
Nt 40000 80000
∆t (sec) 450 225

Table 1: Numerical parameters for data setsT126 andT252.

ponent of the non-linear noise covariance coefficientF11(m,n)
is presented in Fig. 1(b). Both of these coefficients generally
increase withn, and forn> 55 they are largely independent of
m. The eddy viscosity is isotropised withRe

[
ν11

e (n)
]

shown
in Fig. 2(a), and exhibits a cusp like shape approaching the
LES truncation wavenumberTR. The isotropised version of the
T252 data set is also illustrated in Fig. 2(a), with a lower maxi-
mum value atTR. The non-linear noise covariance is isotropised
with Re

[
F11(n)

]
illustrated in Fig. 2(b) for both theT126 and

T252 data sets. This figure indicates that the magnitude of
Re

[
F11(n)

]
also decreases with resolution.

A comparison is now made between the time andm averaged
kinetic energy spectra on level 1 (E1

K) resulting from the DNS,
anisotropic LES and isotropic LES.E1

K is illustrated in Fig. 3(a)
for T126 and in Fig. 3(b) forT252. The approximate wavenum-
ber of the Rossby wave (kRos≈ 14) is indicated on each graph.
The appropriate DNS truncation wavenumberT, and the LES
truncation wavenumberTR are also labelled. These figures il-
lustrate that the spectra exhibit excellent agreement at both res-
olutions. The level 2 spectra is not presented within; however,
the agreement is equally as impressive. Typical of these types of
simulations, there is an upward curve at the high wavenumber
end of the DNS spectra. This feature, however, has not hindered
the ability to illustrate the subgrid parameterisation process.

Concluding remarks

DNS data from a two level quasi-geostrophic atmospheric
model has been compared to associated LES simulations with
stochastic subgrid parameterisations. The simulations were per-
formed at two resolutions with DNS truncated wavenumbers of
126 and 252 in the periodic directions. The associated LES
simulations were performed with half the number of wavenum-
bers in each direction. Two LES variants were undertaken for
both resolutions, an anisotropic and an isotropic closure.All
of the terms required for the subgrid models were derived from
the DNS data sets. The maximum values ofν11

d (n) andF11(n)
were found to decrease as resolution increased. The DNS and
both LES variants had very similar kinetic energy spectra. The

simpler isotropic closure is sufficient because the anisotropic
coefficients in figure 1 are similar for allm at a givenn. This
may or may not be the case when topology is added.

The subgrid parameterisation method presented within is
equally applicable to General Circulation Models, and general
studies on three-dimensional turbulence.
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