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The influence of pipe length in direct numerical simulation
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Abstract

A direct numerical simulation (DNS) of fully developed turbu-
lent pipe flow is performed atReτ ≈ 170 and 500 to examine the
effect of the streamwise domain length on the convergence of
turbulence statistics. Computational domain lengths varyfrom
theπδ to 20πδ. Lower order statistics such as mean flow, turbu-
lence intensities, Reynolds stress, correlations and higher order
statistics including energy spectra, skewness and flatnesswere
computed. The findings show that in the near wall region (be-
low the buffer region,r+ ≤ 30), the required pipe length for all
turbulence statistics to converge requires a minimum viscous
length ofO(6300) wall units. It was also found that for con-
vergence of turbulence statistics at the outer region, a proposed
pipe length of 8πδ seems sufficient for the Reynolds numbers
considered in this study.

Introduction

The vast amount of data that can be obtained from DNS has en-
abled scientists to better understand turbulent flow physics and
is becoming an important tool in turbulence research [17]. One
of the pioneering study using DNS is that of a three-dimensional
isotropic turbulence by Orszag & Patterson [21]. The advance-
ment in computer technology has led to more DNS studies be-
ing carried out on turbulent wall-bounded flows, see figure 1.
With Reynolds numbers of DNS approaching nominally sim-
ilar Reynolds numbers as experiments, it is therefore possible
to compare turbulence statistics between them. However, early
hot-wire experiments have shown that long streamwise struc-
tures exist in wall-bounded turbulent flows [9, 24], and recent
experiments by Kim & Adrian [16] have shown from premul-
tiplied spectra that these structures were longer than previously
appreciated. Balakumar & Adrian [4] termed these structures
as “large-scale motions” (LSMs) as motions with wavelength
of up to 2-3δ, where δ is the half channel height, pipe ra-
dius or boundary later thickness and “very-large-scale motions”
(termed VLSMs with wavelength of more than 3δ). A recent
study by Hutchins & Marusic [11] reported long meandering
features exceeding 20δ in the logarithmic region of turbulent
boundary layers, and termed them as “superstructures”. Other
reports by Montyet al. [19, 18] showed that these long me-
andering features in pipe and channel are up to 25δ in length.
Therefore, it is important to better understand how statistics
are influenced by how the boundary conditions interact with
the largest scale motion in DNS, since its impractical to have a
computational domain of infinite length. In this paper, we will
investigate the length of domain required in order to obtaincon-
verged statistics and the effects of computational domain length
on turbulence statistics. The Reynolds numbers chosen for this
study areReτ ≈ 170 and 500.

Discretisation

The numerical scheme employed in this study is detailed in
Blackburn & Sherwin [5]. The scheme uses a spectral ele-
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Jiménez & Pinelli [14] ⊞ Eggelset al. [8] ◭

Abeet al.[2] ⊙ Wagneret al. [25] �

Abeet al.[1] ⊠ Wu & Moin [26] •

Antoniaet al. [3] Current Study ⋆

Moseret al. [20] ⊗
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Figure 1: Previous wall-bounded DNS studies for pipe and
channel.

ment discretisation in the meridional semi-plane with a 10th

order Gauss-Lobatto-Legendre nodal-based expansion in each
element and a Fourier discretisation in the azimuthal direction.
The axial, radial and azimuthal directions are denoted asx, r,
andθ andNx, Nr andNθ are the number of elements. The axial,
radial and azimuthal velocities are denoted byUx,Ur andUθ
with the corresponding fluctuating components asu,ur anduθ
respectively. A periodic boundary condition is specified inthe
axial direction. The details of the computational domains for
both Reynolds numbers are summarized in table 1, here the ‘+’
symbol denotes scaling with viscous unitsν/uτ, whereuτ is the
friction velocity andnu is the viscosity. The spatial resolutions



Reτ 170 500

Pipe Length (Lx) [πδ, 2πδ, 4πδ, 8πδ, 12πδ, 20πδ] [πδ , 2πδ, 4πδ, 8πδ, 12πδ, 20πδ]

Symbol [−− , © , + , , ▽ , × ] [−− , © , + , , ▽ , × ]

Nx [8, 16, 32, 64, 96, 160] [23, 46, 92, 194, 276, 460]

Nr 8 16

Nθ 128 384

∆x+ 6.7 6.8

∆r+ [0.5, 3.6] [0.07, 5.5]

∆rθ+ (at wall) 8.4 8.2

Table 1: Summary of numerical simulation parameters.
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Figure 2: Mean Velocity profiles forReτ ≈ 170 and 500 for
different pipe lengths. Symbols are as in table 1.

for different domains are kept constant for each Reynolds num-
ber. This ensures that effects on turbulence statistics is purely
due to domain length variation and is not influenced by spatial
resolution issues.

Results

The mean velocity profiles for both Reynolds numbers are
shown in figure 2. Here we show the velocity profiles for all
pipe lengths as a function of normalized wall-normal direction,
wherer+ = 0 is the wall. It can be seen that the only profile that
does not converge is that ofReτ ≈ 170 at pipe length ofπδ.

In figure 3, the turbulence intensities for different pipe lengths
are shown. ForReτ ≈ 170, pipe lengths ofπδ and 2πδ fail to
converge. The huge increase in the peak intensity (atr+ = 15,
shown as dotted line) forπδ is mainly due to artificial large
structures in the flow as will be discussed later. ForReτ ≈ 500,
a minimum pipe length of 2πδ seems sufficient for statistics to
converge. We have plotted the Reynolds stress -u′u′r

+
in figure

4. The results show that the profile atReτ ≈ 170 atLx = πδ
fails to converge. Even though the order of statistics for both
Reynolds stress and turbulence intensity are the same, the ra-
dial velocity components are less affected by pipe length and
hence the finding is similar to that of the mean velocity pro-
file. Next we show the cross-correlation between axial fluctuat-
ing wall shear stressτx and axial fluctuating velocityu. Figure
5 show the contours of correlation coefficient as a function of
r+ and axial separation distance∆x+ for different pipe lengths,
outermost contour begins at 0.05 with increment of 0.25. Con-
tour lines for,Lx = πδ, 2πδ for Reτ ≈ 170 andLx = πδ, 2πδ for
Reτ ≈ 500, that do not close, suggest ‘contamination’ of struc-
tures in the flow (in an average sense) owing to the periodicity
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Figure 3: Streamwise turbulence intensity for different pipe
length. (a)Reτ ≈ 170, (b)Reτ ≈ 500. The dotted lines are
at r+ = 15. Symbols are as in table 1.
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Figure 4: Reynolds stress -u′u′r
+

for different pipe lengths at
Reτ ≈ 170 and 500. Symbols are as in table 1.

in the streamwise direction. This is due to having pipe lengths
that are too short to accommodate the longest structures in the
flow field. This translates to having infinitely long structures
constantly having an influence on the wall shear stress. It would
seem that these ‘infinite long structures’ contribute to thehigher
peak turbulence intensity as seen in figure 3. In figure 6, the pre-
multipled one-dimensional energy spectra is plotted as a func-
tion of r+ and streamwise wavelengthλ+

x . We have chosen the
four longest pipe lengths (Lx = 4πδ(dot-dashed line ),
8πδ(dotted line ), 12πδ(dashed-line−−) & 20πδ(solid line
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Figure 5: Cross correlation ofτx andu for different pipe lengths
at (a)Reτ ≈ 170 and (b)Reτ ≈ 500. Symbols are as in table 1.
Contour lines begin at 0.05 (outermost) with increment of 0.25.

)) to illustrate the effect of insufficient pipe length on
the energy spectra. These pipe lengths are chosen because ear-
lier computed lower order statistics show a minimum length of
4πδ for convergence. Results for both Reynolds numbers seem
to suggest a pipe length of 8πδ for statistics to achieve conver-
gence. The skewness for axial fluctuating velocityu in the near-
wall region is shown in figure 7. It is apparent atReτ ≈ 170,
results do not converge for pipe lengths less than 4πδ. Whereas
the results forReτ ≈ 500 seems to show convergence for all pipe
lengths in the near-wall. Similar results are found for flatness
for axial fluctuating velocityu as shown in figure 8.

λ+
x

102

103

104

(a)

Reτ ≈ 170

r+

λ+
x

100 101 102

102

103

104 (b)

Reτ ≈ 500

Figure 6: Pre-multiplied energy spectra for streamwise veloc-
ity u for (a) Reτ ≈ 170 and (b)Reτ ≈ 500 for all wall normal
locationsr+. Contour lines are from 0.35 (outermost) with in-
crement of 0.4. The symbols used are 4πδ (dot-dashed line

), 8πδ (dotted line ), 12πδ (dashed-line−−)
and 20πδ (solid line ). The (+) symbol is atr+ ≈ 15 and
λ+

x ≈ 1000.

Conclusions
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Figure 7: SkewnessS(u) = u3/u23/2
for different pipe lengths

at (a)Reτ ≈ 170 and (b)Reτ ≈ 500. Symbols are as in table 1.
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Figure 8: FlatnessF(u) = u4/u22
for different pipe lengths at

(a) Reτ ≈ 170 and (b)Reτ ≈ 500. Symbols are as in table 1.

The influence of varying the computational pipe length on tur-
bulence statistics were investigated. The results are summarized
in table 2. Findings show that different statistics requirediffer-
ent pipe lengths for convergence. To obtain converged results
in the near-wall region, a pipe length scaled in viscous units of
L+

x ≈ O(6300) seems sufficient. For most statistics to achieve
convergence, a recommended pipe length ofLx ≈ 8πδ seems
sufficient.

Acknowledgements

We would like to gratefully acknowledge the financial support
of the Australian Research Council and APAC’s Merit Alloca-
tion Scheme and VPAC for the computational resources.

References

[1] Abe, H., Kawamura, H. and Choi, H., Very large-scale
structures and their effects on the wall shear-stress fluctu-
ations in a turbulent channel flow up to Reτ = 640,Journal



Turbulence Statistics Min length(δ) Min length(+)

Reτ = 170 Reτ = 500 Reτ = 170 Reτ = 500

Mean velocity profile 2π π 1000 1500

Turbulence intensity 4π 2π 2100 3100

Reynolds stress 2π π 1000 1500

Cross-Correlations 8π 4π 4300 6300

1d energy spectra 8π 8π 4300 12300

Skewness,r+ < 100 4π π 2100 1500

Flatness,r+ < 100 4π π 2100 1500

Table 2: Table of summary for estimated minimum computational pipe length for convergence of different turbulence statistics for both
Reτ ≈ 170 and 500. The second column displays minimum length in terms of pipe radius (δ) and the last column is in terms of viscous
length scale (+).

of Fluids Engineering, 126, 2004, 835 – 843.

[2] Abe, H., Kawamura, H. and Matsuo, Y., Direct numeri-
cal simulation of a fully developed turbulent channel flow
with respect to the Reynolds number dependence,Journal
of Fluids Engineering, 123, 2001, 382 – 393.

[3] Antonia, R., Teitel, M., Kim, J. and Browne, L. W. B.,
Low-Reynolds-number effects in a fully developed turbu-
lent channel flow,Journal of Fluid Mechanics., 236, 1992,
579 – 605.

[4] Balakumar, B. J. and Adrain, R. J., Large-and very-large-
scale motions in channel and boundary-lyer flows,Phil.
Trans. R. Soc. A., 365, 2007, 665–681.

[5] Blackburn, H. M. and Sherwin, S. J., Formulation of
a Galerkin spectral element-Fourier method for thre-
dimensional incompressible flows in cylindrical geome-
tries,Journal of Computational Physics, 197, 2004, 759 –
778.
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