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Abstract 

Conditions leading to the emergence of convective roll instability 
have been identified by linear instability analysis of a stationary 
fluid in a slot subject to spatially distributed heating. It is found 
that for moderate heating wave numbers the pattern of instability 
is generally locked-in with the pattern of heating by a sub-
harmonic relation, and for large heating wave numbers, the 
critical wave number of the rolls has the same value as the 
critical wave number of the rolls for uniform heating. Four 
different types of flow responses are observed depending on the 
Prandtl number of fluid. 

Introduction  

Thermal convection plays an important role in many industrial 
and engineering applications. A layer of fluid heated from below, 
widely known as Rayleigh-Benard convection (RBC),  
characterizes an idealized version of thermal convection. Various 
forms of the motion associated with this convection, i.e., patterns, 
have been observed. A good summary is given by Bodenschatz et 
al. [1].  Very few analyses focused on RBC with spatial variation 
of temperature are available. Mancho et al [4] studied convection 
in a container with the upper surface open to the air and heated 
from below using a Gaussian-like temperature distribution. They 
used silicon oil with Prandtl number Pr = 40.32 as the working 
fluid. Rossby [7] carried out numerical experiments on 
convection in a insulated square container whose bottom wall 
was exposed either to linear or to non-linear temperature 
distributions and contained fluids with Pr = 1-100. Mullarney et 
al. [5] performed both laboratory and numerical experiments with 
the convective circulation that develops in a long channel driven 
by heating and cooling through opposite halves of the horizontal 
base. Wang and Huang [8] studied experimentally circulation 
driven by horizontal differential heating in a tank filled with salt 
water. They maintained linear temperature profile either along 
the lower or the upper boundary. Similar study was done by   
Lyubimova et al. [3], but they used horizontal channel with 
rectangular-cross section.  Natarajan et al. [6] performed a 
parametric study using computer simulations of natural 
convection inside a trapezoidal cavity with the bottom wall either 
uniformly and non-uniformly heated while the two vertical walls 
were maintained at constant temperatures and the top wall was 
insulated. They considered Pr = 0.07-100.  
 

The present work deals with the analysis of convection control 
strategy based on the use of spatially distributed wall heating of a 
slot containing fluid. The heating is such that both walls have the 
‘same’ average temperatures. The spatial distribution of heating 
is controlled through imposition of the heating wave number . 
The analysis is carried out for Prandtl numbers in the range from 
10-2 to 103 and thus covers the range of all possible practical 
applications [9]. Detailed results are presented for heating 
patterns described by a single Fourier mode.  

 
 

Problem Formulation 

Consider steady motion of fluid contained in a slot between two 
plane parallel plates extending to  in the x-direction and 
placed at a distance 2h apart from each other with the 
gravitational acceleration g acting in the negative y-direction, as 
shown in Fig. 1. Motion of the fluid is driven by buoyancy forces 
resulting in the formation of convective rolls. The fluid is 
incompressible, Newtonian, with thermal conductivity k, specific 
heat per unit mass c, thermal diffusivity =k/c, kinematic 
viscosity , dynamic viscosity , thermal expansion coefficient  
and variations of the density  following the Boussinesq 
approximation.   All material properties need to be evaluated at 
the reference temperature defined below. The temperature of the 
upper wall (U) is kept constant and the lower plate is subject to a 
distributed heating with temperature of the lower (L) wall 
described by the following relations 
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where  stands for the wave number of the heating,  denotes the 
relative temperature, i.e. =T-Tref, T denotes the temperature and 
Tref denotes the reference temperature. The reality condition has 

the form *)n()n(  where stars denote complex conjugates. 
The wavelength of the heating is denoted as x=2/. It is 
assumed that the mean temperatures of the both plates are equal, 

i.e., 0)0(
LU  . 

 
 
 
 
 
 
 

Figure 1: Fluid layer subject to spatially distributed thermal forcing. 
 
The temperature field is represented as a sum of conductive field 
0 and deviations 1 associated with convective effects. We 
introduce two temperature scales, i.e., we use the amplitude of 
the temperature variations along the plates as the conductive 
temperature scale Td and Tv= Td/ as the convective temperature 
scale, where Tv/Td=Pr, with Pr= denoting the Prandtl number. 
We select half distance h between the plates as the length scale, 

h/Uv   as the (convective) velocity scale and 2
vv UP   as 

the (dynamic) pressure scale. The complete dimensionless 
temperature is scaled using the convective scale, i.e., 
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where the conductive temperature is a solution of the following 
problem 
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and has the form   
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with  0)y()0(
0  . The dimensionless field equations describing 

motion of the fluid and the resulting changes in the temperature 
field have the form  
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where v = (u,v) denotes the velocity vector, p stands for the 
pressure, Ra=gh3Td/ is the Rayleigh number, 2 denotes the 
Laplace operator, dissipation effects have been neglected in the 
energy equation and the stream function (x,y) is defined in the 
usual manner, i.e., y/u  , x/v  . Introduction of 

stream function permits elimination of pressure from the field 
equations. The boundary conditions take the form 
      01,01v,01u 1                      (6) 

The solution is assumed in the form of Fourier expansions, i.e., 
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Substitution of equation (7) into (5) and separation of Fourier 
components result in a following system of ordinary differential 
equations 
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where -<n<+, D=d/dy and Dn=D2-n22. The required 
boundary conditions have the form 
  
(n)(1)=0,  D(n)(1)=0, (n)(1)=0  for -<n<+ .          (9a-c) 
 
The system (8) together with the boundary conditions (9) needs 
to be solved numerically. The solution method uses variable-step-
size finite-difference discretization based on the Simpson method 
with deferred correction [2] with the resulting algebraic system 
being solved using a simplified Newton (chord) method with 
residual control. The selection of the number and distribution of 
grid points is done automatically so that the specified error 
bounds are met. The number of Fourier modes used in the 
solution was selected through numerical experiments so that the 
flow quantities of interest were determined with at least six digits 
accuracy.    
  
After the obtaining the solution of the steady flow, the linear 
stability analysis of the above flow is considered. The analysis 
begins with the governing equations expressed in terms of stream 
function and temperature. Unsteady, two-dimensional 
disturbances are super-imposed on the mean part and the system 
is linearized. The disturbance stream function and temperature 
fields can be expressed as 

      .c.ceyt,y,x tx)m(i
m

m

)m(
33   


  (10a)       

      .c.ceyt,y,x tx)m(i
m

m

)m(
33   


                 (10b)   

where  is the x-wave number of disturbances,  denotes the 
complex amplification whose real part represents the frequency 
of disturbances and imaginary part denotes the growth rate of 
disturbances, and c.c. means complex conjugate. Substituting Eq. 
(10) into the disturbance equations and separation of the Fourier 
components results, after a lengthy algebra, in a system of linear 
ordinary differential equations in the form, 
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where  
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The reader may note that subscripts 3 and 2 in the above 
expressions refer to the disturbance and mean flow quantities, 
respectively.  
 
Equations (11a-b) together with the homogeneous boundary 
conditions have nontrivial solution only for certain combinations 
of parameters Pr, Ra, ,  and . The required dispersion relation 
has to be determined numerically through solution of the relevant 
eigenvalue problem. The system is posed as an eigenvalue 
problem for . Equations (11a-b) are discretized with spectral 
accuracy using Chebyshev Collocation method. The eigenvalues 
obtained are further refined using ‘inverse iteration’ technique. 
For the purpose of eigenvalue tracking a classical ‘Newton-
Raphson’ and ‘inverse iteration’ search procedures have been 
used. A reasonable guess for the unknown eigenvalue is essential 
for the convergence of the ‘Newton-Raphson’ search routine, but 
the ‘inverse iteration’ routine is quite flexible.  
 

Discussion  

We focus our attention on the simplest reference case where the 
temperature distribution along the bottom wall is expressed by 
one Fourier mode, i.e., )xcos(5.0L  . Various test calculations 

and scans through the parameter space suggest that there exist 
only stationary disturbances, i.e., Real()=0. We shall refer to 
such disturbances as rolls. No travelling wave disturbances have 
been found. We have examined this roll instability for Prandtl 
numbers varying from 103 to 10-2. We shall begin description of 
the critical stability conditions, of the structure of the disturbance 
motion and how the instability responds to changes in the spatial 
pattern of heating by considering at first fluid with the Prandtl 
number Pr=7. Such value of Pr closely approximates properties 
of water. It also serves as an example of large Pr fluids as 
differences found in the stability characteristics for fluids with Pr 
= 7 and Pr = 100 are rather small. 
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Figure 2. Variations of the critical Rayleigh number Racr (left) and the 
critical disturbance wave number cr (right) as functions of the heating 

wave number  for Pr = 7. 
 
Critical instability (the most dangerous disturbances) diagrams 
are shown in Fig. 2 as a function of the heating wave number . 
The intensity of the heating required to induce roll instability, as 
measured by Racr, is a strong function of the heating wave 
number . The lowest value of Racr is Ramin = 2901.2 and it 
occurs for  = min = 3.93. The fluid is rapidly stabilized when  
decreases below this value and, as a matter of fact, this instability 
does not occur when  < lb = 3.6 in the range of Ra considered 
in this analysis. When α increases above min, the Racr gradually 
increases, which implies that higher intensity of heating is 
required to induce the instability. When  is big enough, the 
increase of Racr follows asymptote in the form Racr = 236 α1.5 
(Fig.2). When  < lc = 4.37 the heating pattern and the 
disturbance pattern are locked-in according to the relation cr = 
/2. When  > lc, the lock-in is broken and there is no obvious 
relation between the heating pattern and the disturbance pattern. 
When , the critical wave number cr reaches to the 
asymptotic value cr = 1.56, which is the same as found in the 
case of the classical instability of fluid uniformly heated from 
below. The disturbance pattern for the lock-in situation is 
illustrated in Fig.3 for  = 4.3, which just below the lock-in value 
of lc = 4.37. The sub-harmonic relation between the basic state 
pattern and the disturbance pattern is clearly visible.  
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Disturbance streamlines for the heating wave number  = 4.3 
and the Rayleigh number Racr = 3048.4 for the fluid with the Prandtl 
number Pr = 7. Dotted lines for the meanflow, and solid lines for 
disturbances.  

Now, we shall discuss the case of Pr=0.04. This particular value 
of the Prandtl number has been selected to represent low Pr fluids 
and is typical for liquid metals. Critical instability diagrams are 
displayed in Fig. 4 and demonstrate qualitatively different 
responses of the system. Two critical branches have been 
identified. The first one describes system response for smaller 
heating wave numbers, i.e.,  < s = 8.76, where rolls that are 
locked-in with the heating pattern according to a sub-harmonic 
relation in the form cr = /2. The minimum value of Ra for this 
branch is Ramin,1 = 1087.7 and it occurs at min,1 = 4.04. The rolls 
are fully stabilized for  < lb = 3.8 for the range of Ra 
considered and the critical Rayleigh number increases as Racr = 
9.83.1 for . The second branch describes critical conditions 

for larger heating wave numbers, i.e.,  > s = 8.76, where the 
rolls are not locked-in with the heating. The minimum value of 
Ra for this branch is Ramin,2 = 6289.4, it corresponds to the 
minimum value of the disturbance wave number cr = min,2 = 
0.96 and it occurs at min,2 = 9.8. The Rayleigh number increases 
as Racr = 2361.5 and cr  1.56 when   . The asymptotic 
behavior is the same as the case of Pr=7. Two different 
disturbance structures co-exist at the onset of instability for the 
heating wave number  = s = 8.76, i.e., the locked-in structure 
characterized by s1 = 4.38 and the unlocked structure described 
by s2 = 1.61. 
 
 
 
 

 

 

 

 

 

Figure 4. Variations of the critical Rayleigh number Racr (left) and the 
critical disturbance wave number cr (right) as functions of the heating 
wave number  for Pr = 0.04.  

The disturbance velocity and temperature fields for the locked-in 
patterns (branch 1) at the onset of instability are illustrated in 
Fig.5 for conditions corresponding to min,1 = 4.04 and in Fig.6 
for conditions corresponding to the intersection of both branches, 
i.e., s = 8.76. The sub-harmonic relation between the primary 
convection and the disturbance field is clearly visible. The 
emergence of the second layer of rolls at the top of the slot for 
larger heating wave numbers is observed.  
 

 

 

 

 

 

 

 

Figure 5. Disturbance streamlines for branch one of the instability for the 
heating wave number  = min,1 = 4.04 and the Rayleigh number Racr = 
Ramin,1 = 1087.7 for the fluid with the Prandtl number Pr = 0.04. Dotted 
lines for the meanflow, and solid lines for disturbances.  

 

 

 

 

 

 

 

 

Figure 6. Disturbance streamlines for branch one of the instability for 
conditions corresponding to the intersection of both branches, i.e., for the 
heating wave number  = s =  8.76 and the Rayleigh number Racr = Ras 
= 8142.9 for the fluid with the Prandtl number Pr = 0.04. Dotted lines for 
the meanflow, and solid lines for disturbances.  
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Disturbance pattern corresponding to the intersection of both 
branches, i.e., s = 8.76, corresponding to branch 2 is displayed 
in Fig.7. This pattern is markedly different from the branch 1 
pattern at the intersection point displayed in Fig. 6 and its form is 
difficult to characterize. 

 

 

 

 

 

 

 

Figure 7. Disturbance flow field for branch 2 of the instability for 
conditions corresponding to the intersection of both branches, i.e., for the 
heating wave number  = s = 8.76, the Rayleigh number Racr = Ras = 
8142.9 and the critical disturbance wave number s2 = 1.61 for the fluid 
with the Prandtl number Pr = 0.04. 

 

 

 

 

 

 

 

 

 

Figure 8. Variations of the critical Rayleigh number Racr as functions of 
the heating wave number  for selected values of the Prandtl number Pr 
in the range from Pr  (0.01, 1000). 

 

 

 

 

 

 

 

 

 

Figure 9. Variations of the critical disturbance wave number cr as 
function of the heating wave number  for selected values of the Prandtl 
number Pr in the range from Pr  (0.01, 1000). 

At this point, we will discuss the case of arbitrary Prandtl number 
fluids.  Critical stability curves for Pr varying between 0.01 and 
1000 are displayed in Figs 8 and 9. We have identified four 
different types of responses depending on Pr of the fluid. Single, 
smooth critical curves exist for Pr>0.4 , we call this as type A 
response where the disturbance pattern is locked-in with the 
heating pattern over a certain range of heating wave numbers  
and there is no lock-in over the rest of the -range. Type B 
occurs for Pr  (~0.19, ~0.4) and also has single, smooth critical 
curves but its characteristic signature involves curves describing 
critical wave numbers cr which turn downwards in a 
characteristic manner as  decreases (see Fig.9). Type C is 

observed for Pr  (~0.08, ~0.19) and is characterized by the 
critical curves displaying a characteristic bump, with the size of 
this bump increasing and moving towards larger values of  as Pr 
decreases (see Fig.8). Type D is observed for Pr < ~0.08 and is 
characterized by the existence of two branches of the critical 
curve, with branch one corresponding to the locked-in pattern 
and branch two corresponding to the no locked-in pattern, and 
both patterns co-existing at a specific, Pr-depend value of  
(intersection of both branches).  
 

Conclusions 

Natural, buoyancy-driven convection of a Boussinesq fluid 
contained in an infinite slot has been analyzed. The slot is subject 
to a spatially distributed heating and the gravity is directed across 
the slot. It is assumed that the mean temperatures of both walls 
are the same and thus the convection occurs only due to the 
spatial variability of the heating. Results are presented for the 
case of sinusoidal variations of temperature of the lower wall 
while the temperature of the upper wall is kept constant. 
Conditions leading to the emergence of roll instability have been 
identified. The system response is a strong function of the Prandtl 
number, especially for smaller values of Pr. In the case of 
moderate  the pattern of instability is generally locked-in with 
the pattern of heating according to the relation cr = /2. In the 
case of large , the critical disturbance wave number becomes 
independent of  and approaches value cr = 1.56 when  is large 
enough. It has been shown that in this case the critical value of 
Ra increases proportionally to 1.5 for all values of Pr. Four 
different types of responses are identified depending on Pr of the 
fluid. 
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