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Abstract 

Stress-sensitive reservoirs are reservoirs whose permeability and 
porosity is pressure dependent. This dependence creates a 
nonlinearity in the equations that govern fluid flow. This work 
presents solutions for the transient behaviour of pressure (and 
therefore flow rate) in 1D reservoir models. These solutions are 
derived using the Cole-Hopf transform. The results show that 
early time flow rate data from a stress-sensitive model has the 
same behaviour as that of a non-stress sensitive model with a 
higher permeability.  Analysis of late time flow rate data from a 
stress-sensitive reservoir would suggest a lower permeability than 
early time data. Solutions for stress-sensitive cases can be plotted 
using production data analysis plotting functions. This type curve 
plot implies that the parameters governing stress-sensitivity could 
be extracted from production data using a type curve approach. 

Introduction 

The ease with which fluid can flow through a porous 
medium (or a reservoir) is quantified by its permeability, 
which can be inferred from relationships between observed 
well flow rates and pressures. Major advances in the 
ability to infer permeability and other reservoir 
characteristics from routine well production data, as 
opposed to well test data, have been made over the past 
fifteen years (e.g. Doublet et al. 1994, Araya and Ozkan 
2002). This study considers the analysis of flow rate 
transients from cases in which the permeability of the 
reservoir changes in response to pressure changes i.e. 
stress-sensitive reservoirs. In these reservoirs the effective 
permeability changes as fluid is withdrawn from the 
reservoir. 

Modern production data analysis approaches are based on 
mathematical models which link the well rates and 
pressures.  Interpretation of these data in terms of 
“material balance time” (Doublet et al., 1994) helps to 
account for variability in well production rates with time. 
Current approaches are able to handle vertical wells, 
horizontal wells and fractured wells in unfractured and 
fractured reservoirs. These approaches are developed from 
analytical solutions to the diffusivity equation. The rate or 
pressure response is non-dimensionalised and then both 
integrated and differentiated.  Families of responses for 
varying reservoir parameters are plotted versus time to 
form sets of type curves which can be used to interpret 
field data. 

Development of a production data analysis approach for 
stress-sensitive reservoirs requires a model to represent the 
variation of pressure and flow rate with time during 

production.  The standard form of the diffusivity equation 
which describes pressure change in a reservoir due to well 
production assumes the reservoir permeability and porosity 
do not change in time as reservoir pressure changes. 
Allowing these parameters to change in time creates 
nonlinearities which pose challenges in deriving analytical 
solutions to the diffusivity equation. For stress-sensitive 
reservoirs a recent publication (Marshall, 2008) involving 
the Cole-Hopf transform provides valuable solutions for 
some relevant geometries. 

Numerical experiments (Archer, 2008) have shown that if 
a reservoir is stress-sensitive its production response does 
not follow the type curves associated with a non-stress 
sensitive reservoir with the same geometry.  That finding 
inspired the direction of this study. The current study uses 
an analytical representation of flow in stress-sensitive 
reservoirs to explore the behaviour of flow rate transients 
which could be used to diagnose stress sensitivity from the 
analysis of the production response of stress sensitive 
reservoirs. 

Method 

 Governing Equation 

In this section a mathematical model model governing 
transient pressure and flow rates responses in 1D porous 
media flows is derived. This model is a nonlinear PDE 
since it allows for the porosity and permeability of the 
medium, and the density of the fluid to all be pressure 
dependent. 

Development of the model begins from Darcy’s which law 
links pressure gradients and velocity in porous medium 
flow. 
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where v is the fluid velocity, k is the permeability of the 
medium, μ is the fluid viscosity and p is pressure. 

The continuity equation governs conservation of mass: 
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where ρ is the fluid density, φ is the porosity of the porous 
medium and t is time. 

Following the derivation presented by Marshall (2008) ρ, 
φ and k are assumed to depend exponentially on pressure. 
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where pi is the initial reservoir pressure. 

When equations (1) to (5) are combined they result in the 
following nonlinear PDE. 
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The nonlinear term in (6) is typically neglected by arguing 
that this term is insignificant in comparison to other terms. 
However in some reservoirs e.g. tight (low permeability) 
gas reservoirs the effects of stress sensitivity can mean that 
reservoir permeability may vary up to 90% (Warpinski and 
Teufel, 1992) between the permeability observed at the 
initial reservoir pressure and the permeability in the near 
well region (i.e. at a lower pressure). 

A few authors, (e.g. Kikani and Pedrosa, 1991) have 
attempted to handle this nonlinearity via a perturbation 
expansion approach, while other authors (e.g. Osorio et al., 
1997) have developed numerical models which include 
stress sensitivity. In the relatively small body of work 
available on modelling the flow behaviour of stress 
sensitive reservoirs, pressure transient behaviour has been 
the usual focus.  The current study addresses rate transient 
behaviour to assess whether rate transient behaviour (i.e. 
variations in a well flow rate in time, while the well flows 
at constant pressure) can be used to diagnose the presence 
of stress sensitivity in a reservoir’s production response. 

Solution Strategy 

Marshall (2008) provides solutions to equation (6) via the 
Cole-Hopf transform for two cases of a 1D system – one 
with a fixed pressure at both the inner and outer boundary 
and also one case with a fixed flowrate at the inner 
boundary in conjunction with a fixed pressure at the outer 
boundary.  This choice of outer boundary is sometimes 
relevant to petroleum reservoir flows e.g. when reservoirs 
are in hydraulic communication with large aquifers.  
However a more typical outer boundary condition in 
petroleum reservoir engineering is a “no-flow” outer 
boundary condition which requires a zero pressure 
gradient at the far end of the system. 

To derive solutions to equation (6) Marshall casts the 
equation in terms of dimensionless variables as: 
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in which L is the length of the 1D reservoir. 

The Cole-Hopf (Cole, 1951 and Hopf, 1950) transform 
allows solutions to equation (8) to be found by linearising 
the equation by rewriting it in terms of a new variable, Y. 
Under the transform 
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with β*=(pi – pwell)(βl+βK) equation 8 becomes 
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Production from petroleum wells at constant bottom hole 
pressure is very common, so the following inner boundary 
condition was used in this study: 
 oYY =),0( τ  .......................... (12) 
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The initial condition for all cases represents a constant 
initial pressure: 
 oYXY =)0,(  .......................... (13) 
Two outer boundary conditions were considered in this 
study.  The first is a constant pressure boundary condition 
(as per Marshall, 2008): 
 1),1( YY =τ  ........................... (14) 
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Marshall presents the solution to equation (8) with 
boundary and initial conditions defined by (12) to (14) as: 
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Marshall also applies the Laplace transform inversion 
integral to invert this solution. 

The current study also considers an alternative outer 
boundary condition more typical of petroleum reservoir 
condition.  This is a zero pressure gradient (i.e. no fluid 
flow) at the outer boundary.  This boundary condition is 
defined as: 
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With this boundary condition the following solution to the 
transformed pressure was derived: 
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Production Data Analysis 

Doublet et al. 1994 presented an innovative approach to 
the analysis of production data (i.e. well pressures and 
rates). That work is based on presentation and 
interpretation of production data in terms of three key 
“plotting functions” which take on characteristic shapes. 
The first of these plotting functions is “material balance 
time”: 
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where q is the well production rate (derived from the 
Darcy velocity at X=0), and Np is the cumulative 
production from the well. The flow rate and rate integral 
functions which are plotted against material balance time 
in Doublet et al.’s production data analysis approach area: 
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When plotted as a family of curves (between which a key 
parameter such as reservoir size varies) equations (18) to 
(21) form “type curve” sets which can be overlain with 
field data from wells.  The process of matching the field 
data to the underlying theoretical models allows reservoir 
permeability and size to be determined 

The current study considers whether the behaviour of the 
well flow rates from the theoretical model defined by 
equations (15) and (17) has characteristic features which 
can be used to diagnose the presence of stress-sensitive 
behaviour and to quantify this effect. 

Results 

A base case was considered which has parameters defined 
in table 1. Since the petroleum industry internationally 
does not use SI units these parameters are listed with both 
“field units” and SI units. 

Parameter Value, field units Value, SI units

Permeability, ko,  
at p = pi 

100 md 9.869x10-14 m2 

Viscosity, μ 1 cp 0.001 Pa.s 

Initial reservoir 
 pressure, pi 

5000 psi 3.44x107 Pa 

Well reservoir 
 pressure, pwell 

1000 psi 6.8944x106 Pa 

Porosity, φo  
at p = pi 

0.25 0.25 

βl 2x10-5 psi-1 2.9x10-9 Pa-1 

Length of reservoir, L 2000 ft 609.6 m 

Cross sectional area 
of reservoir, A 

2500 ft2 232.25 m2

Table 1.Base case model parameters 

Constant Pressure Outer Boundary 

To assess how the degree of stress-sensitivity in the base 
case model affects flow rates at the well when a constant 
pressure outer boundary condition is imposed, cases were 
run with β* varying from 0 (no stress sensitivity) to 1 
(very significant stress sensitivity), as shown in Figure 1.  
The curves that result are essentially parallel to one and 
other at all times, with the more stress sensitive cases 
producing higher flow rates since equation (5) implies that 

these cases will have higher effective permeabilities near 
the wellbore (i.e. where pressure is lowest). 

 
Figure 1. Flow rate versus time, varying β*, constant pressure outer 
boundary condition. 

For comparison Figure 2 shows rate transient data for non-
stress sensitive cases with varying levels of permeability 
(homogeneous, non-pressure dependent).  It is evident that 
when the base permeability, ko, controls the timing of the 
change in the flow rate profile.  This change reflects a 
change from “transient” flow to “boundary dominated” 
flow in which the constant pressure outer boundary 
condition prevents further decline in the well flow rate. 

 
Figure 2. Flow rate versus time, non-stress sensitive cases with varying 
permeabilities. 

Figure 3 compares a stress-sensitive case with β* = 0.5 to 
two non-stress sensitive cases. The non-stress sensitive 
cases have increases in the base case permeability of 1.3 
and 1.7 respectively.  These increases were chosen in order 
to match the early time (transient) and late time (boundary 
dominated).  If the early time were interpreted using a non-
stress sensitive model the base permeability would be 
overestimated by 70% (when compared to the permeability 
at initial reservoir pressure).  If the late time data were 
interpreted using a non-stress sensitive model the base 
permeability would be over-estimated by 30%. 

No Flow Outer Boundary 

The rate transient behaviour of the stress sensitive solution 
derived for a case with a no flow outer boundary condition 
and a constant pressure inner boundary condition is shown 
in Figure 4 for β * values between zero and one.  The 
lower curve is for β* equal to zero and the upper curve is 
for β * equal to one.  Unlike Figure 1 the curves are not 
exactly parallel to each other. 

Figure 5 compares a non-stress sensitive case to a stress-
sensitive case with β* equal to 0.5.  The early time flow in 
this stress-sensitive case can be matched by the solution 



for flow in a non-stress sensitive reservoir with 
permeability 70% greater than the base permeability in the 
stress-sensitive case. 

 
Figure 3. Comparison of stress-sensitive case (β* = 0.5) and two non-
stress sensitive cases. 

 
Figure 4. Rate transient behaviour for various β* values for no flow outer 
boundary condition case. 

 
Figure 5. Comparison of a stress-sensitive case and a non-stress sensitive 
case. 

The plotting functions defined in equations (18) to (21) are 
plotted in Figure 6 for the base case parameters and β* 
varying from 0 to 1.  The blue curves represent equation 
(19), the red curves equation (20) and the black curves 
depict equation (21).  In each set of curves the upper curve 
is for β* (i.e. the most extreme stress sensitivity).  This 
family of curves implies that β * could be estimated from 
production data by considering the relationship between 
the normalised rates (equation 19) and the rate integral 
derivative function (equation 21). 

Conclusions 

This paper analyses the transient flow rate behaviour of 
stress-sensitive reservoirs and compares this behaviour to 
that of non-stress sensitive reservoirs. Production at 
constant well pressure was considered. With a constant 
pressure boundary outer condition results show that the 
early time data and late time data would both imply overall 
permeabilities that are much higher than the base 
permeability, k0, if interpreted as if this data were from a 
non-stress sensitive case. 

 
Figure 6. Production data analysis type curves for stress sensitive 1D 
reservoir with no flow outer boundary condition. 

A new solution with a no-flow outer boundary condition 
was derived and presented in a type curve format.  If other 
parameters can be fixed this type curve implies that β* star 
values could be extracted from production data (even in 
early time) by considering the separation of data plotted in 
the form of equations 19 and 20, from data plotted in the 
form of equation 21. 

Extension to radial flow in polar coordinates would be 
attractive however a suitable analytical solution is not 
available. The Cole-Hopf transform could though be 
integrated with other numerical methods for this purpose. 

References 

[1] Doublet, L.E., Pande, P.K., McCollum, T.J., and Blasingame, 
T.A., Decline Curve Analysis Using Type Curves — 
Analysis of Oil Well Production Data Using Material 
Balance Time: Application to Field Cases, in Proceedings of 
the Petroleum Conference and Exhibition of 
Mexico,Veracruz, Mexico, 1994, SPE 28688 

[2] Araya A. and Ozkan, E., An Account of Decline-Type-Curve 
Analysis of Vertical, Fractured, and Horizontal Well 
Production Data, in Proceedings of the SPE Annual 
Technical Conference and Exhibition, San Antonio, Texas, 
2002, SPE 77690 

[3] Marshall, S.L., Nonlinear Pressure Diffusion in Flow of 
Compressible Liquids Through Porous Media, Transport in 
Porous Media, 77, 2009, 431 – 446 

[4] Archer, R.A., Impact of Stress Sensitive Permeability on 
Production Data Analysis, in Proceedings of the SPE 
Unconventional Reservoirs Conference, Keystone, 
Colorado, 2008, SPE 114166 

[5] Warpinski, N.R. and Teufel, L.W., Determination of the 
Effective Stress Law for Permeability and Deformation in 
Low-Permeability Rocks, SPE Formation Evaluation, 1992, 
123 - 131 

[6] Kikani, J. and Pedrosa, O.A., Perturbation Analysis of 
Stress-Sensitive Reservoirs, SPE Formation Evaluation, 
6(3), 1991, 379-386 

[7] Osorio, J.G., Chen, H.-Y. and Teufel, L.W, Numerical 
Simulation of Couple Fluid-Flow/Geomechanical Behaviour 
of Tight Gas Reservoirs with Stress Sensitive Permeability, 
in Proceedings of the SPE Fifth Latin American and 
Caribbean Petroleum Engineering Conference, Rio de 
Janeiro, Brazil, 1997, SPE 39055 

[8] Cole, J.D., On a Quasi-linear Parabolic Equation occurring 
in Aerodynamics, Quart. Appl. Math, 9(3), 1951, 225 - 236 

[9] Hopf, E., The Partial Differential Equation ut + uux = μuxx, 
Commun. Pure Appl. Math, 3, 1950, 201-216 

 


	Author Index
	Paper List
	Conference Programme

