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Abstract 

The present investigation is concerned with natural convection in 
a wedge-shaped domain induced by constant isothermal heating 
at the water surface. A semi-analytical approach coupled with 
scaling analysis and numerical simulation is adopted to resolve 
the problem. The study reveals that the overall flow domain in 
the wedge is composed of two distinct sub-regions, a conductive 
region near shore and a convective region offshore. The major 
time and velocity scales governing the flow development in both 
regions are proposed and verified. 

Introduction  

Convective circulations in coastal waters induced by heat transfer 
through the water surface play an important role in the transport 
of nutrients, pollutants and chemical species across reservoirs and 
lakes, and thus have attracted significant research interest (see for 
example [1-3]). Over a typical diurnal cycle, the water body is 
subject to heating by solar radiation in the daytime and cooling 
by heat loss through the water surface at the night-time. The 
problem of constant heating by solar radiation has been 
investigated in [4-6], and that of constant cooling by heat loss 
from the surface has been investigated in [7-9]. The problem of 
alternate heating and cooling over diurnal cycles has also been 
reported in [3, 10, 11]. Almost all of the existing investigations 
on this topic have considered an iso-flux thermal boundary 
condition at the water surface, either in the form of uniform 
radiation entering the water body or a uniform heat flux leaving 
the water body.  

In the absence of solar radiation, the water bodies are also 
subject to heating or cooling due to the temperature difference 
between the water bodies and the atmosphere. The proper 
thermal boundary condition relevant to this situation would be a 
prescribed temperature rather than a heat flux at the water 
surface. Unfortunately, studies of heating or cooling by an 
isothermal surface temperature are very scarce. The only studies 
reported in the literature seem to be the experimental works of 
Bednarz et al. [12, 13]. In [12], a constant temperature which is 
lower than the initial water temperature is imposed at the water 
surface to model the night-time cooling problem. In the more 
recent experiment reported in [13], the water surface temperature 
is altered periodically in order to model the diurnal thermal cycle.  

A literature survey indicates that no analytical solution or 
theoretical analysis is yet available to quantify the flow properties 
in coastal waters subject to isothermal heating or cooling. This 
has motivated the present investigation. In this study, a hybrid of 
asymptotic solution and scaling analysis is developed to quantify 
the flow properties in coastal waters. Numerical simulations are 
also conducted to verify the asymptotic solution and scaling 
relations. 

The Physical Model and Numerical Procedures 

Under consideration is a two-dimensional (2D) wedge-shaped 
domain consisting of a near-shore region with a sloping bottom 
(the slope is A) and an offshore region with a uniform depth, as 
depicted in figure 1. The maximum water depth in the model 
reservoir is h. Initially the water is stationary and isothermal at a 
temperature of T0 throughout the entire domain. At the start-up, a 
uniform temperature T0+T is imposed at the water surface and 
maintained thereafter. The subsequent development of the natural 
convection flow in the wedge is governed by the following 2D 
Navier-Stokes and energy equations, in which the usual 
Boussinesq assumption has been made: 
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where u and v are the velocity components in the x and y-
directions respectively; t is the time; p is the pressure; T is the 
temperature; g is the gravitational acceleration; and 0, , , k are 
the density, kinematic viscosity, thermal expansion coefficient 
and thermal diffusivity of water at the reference temperature T0.  

A rigid non-slip and adiabatic boundary condition (u = v = 0 
and ߲ܶ ߲݊⁄ ൌ 0 where n is the direction normal to the bottom) is 
assumed for the sloping and flat bottoms. The water surface is 
stress free (߲ݑ ⁄ݕ߲ ൌ 0

 

and v = 0). An open boundary condition 
is considered at the deep end (߲ܶ ⁄ݔ߲ ൌ 0, ݑ߲ ⁄ݔ߲ ൌ 0

 

and v = 
0), and any backflow from the deep end is at the reference 
temperature of T0. 

Before solving the governing equations numerically, 
equations (1)-(4), along with the above-described initial and 
boundary conditions, are normalised using the following 
characteristic scales: the length scale x, y ~ h; the time scale t ~ 
h2/k; the velocity scale u, v ~ k/h; the pressure gradient scale px, 
py ~ gT; and the temperature difference scale [T-(T0+T)] ~ 
T. The resultant normalised governing equations are 
characterised by two non-dimensional parameters: the Prandtl 
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Figure 1. Sketch of the flow domain and the coordinate system. 



(Pr) and Rayleigh (Ra) numbers, which are defined as 
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The normalized governing equations are solved numerically 
using a finite-volume method. In all simulations, the maximum 
dimensionless water depth is 1; the sloping and flat regions are of 
the same length; and a fixed Prandtl number of Pr = 7 is adopted. 
Two bottom slopes of A = 0.05 and 0.1 respectively are 
calculated. The flow domain is meshed with a non-uniform grid 
which has an increasing grid density toward all of the boundaries. 
Mesh and time-step dependency tests have been conducted for a 
typical case in the convective flow regime with a Rayleigh 
number Ra = 2 × 107 using three different meshes of 301 × 51, 
451 × 75 and 601 × 101 respectively. Based on these tests, the 
medium grid 451×75 is adopted in the subsequent simulations, 
and the corresponding dimensionless time step is 2.0 × 10-4. 

Theoretical Analysis and Numerical Validation 

For the model described above, it is expected that, at any time t > 
0, the entire domain consists of two distinct sub-regions, one near 
the tip with a uniform temperature – a conductive region; and the 
other further out of the tip with a distinct thermal boundary layer. 
There will also be a transitional region between these two distinct 
sub-regions.  

Analysis and Simulation for the Conductive Region 

After the isothermal heating is initiated at the water surface, heat 
is transferred to the interior by conduction, resulting in a 
horizontal thermal boundary layer growing downwards from the 
surface. The scale for the thermal boundary layer thickness can 
be derived from a balance between the unsteady and vertical 
diffusion terms in the energy equation (4) as (refer to [14]) 

 ሻଵ/ଶ (6)ݐሺ݇~்ߜ 

The heat transfer process at the early stage can be simplified 
as a one-dimensional (1D) vertical conduction problem with a 
variable local water depth of Ax, and described by the following 
1D equation 
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The above described initial and boundary conditions are also 
applicable to the 1D conduction problem, which can be solved by 
separation of variables. The solution of temperature is  
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The average temperature over the local depth at a given offshore 
distance ݔ can be calculated as  
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and the horizontal gradient of the local average temperature can 
be obtained as   
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Since the summation terms in (10) decrease rapidly with n, the 
above summation can be approximated by the first term n = 0 as 
follows 
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After normalization (10) and (11) are rewritten as 
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The temperature gradient given in (13) is a function of both 
time and offshore distance, and thus can be examined from both 

temporal and spatial perspectives. From the temporal perspective, 
the time at which the first derivative of the horizontal 
temperature gradient with respect to time approaches zero 
represents the time when the maximum temperature gradient 
occurs at a given position x. This time is derived using (13) as  

 t୫ ~ 
ସAమ୶మ

஠మ  (14) 

Substituting (14) into (13), the corresponding maximum negative 
temperature gradient is given as 
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It can be seen from (14) that the time for the horizontal 
temperature gradient to reach the maximum value at any offshore 
distance x approximately corresponds to the time for the thermal 
boundary layer to reach the local depth, which is ܣଶݔଶ ݇⁄ . 

The numerical solutions of the time series of the horizontal 
temperature gradient for different bottom slopes and offshore 
distances are plotted together in figure 2(a). In figure 2(b), the 
horizontal temperature gradient from the numerical simulation is 
normalised by the maximum negative temperature gradient given 
in (15), and the time is normalised by the corresponding time 
scale given in (14). As a consequence, the maximum negative 
temperature gradient points for different bottom slopes and 
offshore distances all collapse onto a single point, which 
demonstrates the validity of the scaling relations (14) and (15).  

      

(a)

 

     

(b)

 

Figure 2. Normalised temperature gradient at various offshore distances 
and bottom slopes (a) results from numerical simulations (b) numerical 
results normalized by scaling predictions. 

From a spatial perspective, the position where the first 
derivative of the horizontal temperature gradient (13) with 
respect to offshore distance x approaches zero is the location 
where the maximum horizontal temperature gradient occurs at a 
given time. This location is derived using (13) as 

  x୫ ~ ට
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The above scale indicates that the maximum horizontal 
temperature gradient occurs approximately at the position where 
the edge of the thermal boundary layer intersects with the bottom, 
which agrees well with the prediction of (14) from a temporal 
perspective.  

The horizontal temperature gradient generates a pressure 
gradient that drives the flow. A balance between the buoyancy 
term and the pressure gradient in the vertical momentum equation 
(3) gives 
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The derivative of (17) with respect to x is obtained as 
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For the horizontal momentum equation (2), the viscous term 
dominates the inertia and convection terms, and the proper 
balance is between the pressure gradient and viscous terms: 
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The derivative of (19) with respect to ݕ is obtained as 
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From (18) and (20), a relation between the flow velocity and 
the horizontal temperature gradient is established as 
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The velocity scale can be derived from (11) and (21) as  

 u~4RakଶtA/hଷeି
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A close examination of the above velocity scale indicates that the 
velocity first increases and then decreases with time, and thus a 
maximum velocity is reached at a certain point of time. For t 
ื ∞, u ื 0, suggesting that for the conduction-dominated 
region, the flow eventually becomes stationary. The time for the 
maximum velocity to occur can be derived by setting the time 
derivative of the velocity (22) to zero. This time is the same as 
that for the negative horizontal temperature gradient to reach its 
maximum value, as specified in (14). Substituting (14) into (22), 
the scale for the maximum velocity is obtained as 

 u୫ୟ୶~
ଵ଺

ୣ஠మ Rak
Aయ୶మ

hయ ~Rak
Aయ୶మ
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Figure 3. Time series of the maximum horizontal velocity. (a) Unscaled 
numerical data. (b) Scaled numerical data. 

The time series of the maximum horizontal velocity extracted 
along vertical lines at different offshore distances are plotted in 
figure 3(a) for different Rayleigh numbers and different bottom 
slopes. In figure 3(b), the numerical data plotted in figure 3(a) is 
normalised using the time scale (14) and the velocity scale (22) 
respectively. It is clear in figure 3(b) that different sets of results 
from the numerical simulation collapse together at the point of 
the maximum velocity. Therefore, the dependency of the 
maximum velocity and its corresponding time on the bottom 
slope, the Rayleigh number and the offshore distance is well 
predicted by the scaling relations.  

Analysis and simulation for the convective region 

From the previous analysis of the conductive region, the 
maximum flow velocity always occurs at the position where the 
thermal boundary layer intersects the sloping bottom. For a given 
time during the flow development stage, the location of the 
maximum flow velocity can be determined as 

 x୫ୟ୶~ δT A⁄ ~ሺktሻଵ/ଶ/A  (24) 

For x > xmax, if convection balances conduction, the thermal 
boundary layer will stop growing and the flow becomes steady. 
The balance between convection and conduction is written as 
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Substituting (11) and (23) into (25), the steady state time scale as 
a function of the offshore distance x can be derived as 
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Substituting (24) into (26), it can be derived that xmax stops 
moving at a time scale of 
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Correspondingly xmax stops moving offshore at the location of 

 xୱୡ~
h
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Substituting (26) into (22), the steady state velocity for the 
distinct boundary layer, which is also a function of the offshore 
distance x, can be derived as 
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From (28), a critical Rayleigh number function for the 
presence of a distinct thermal boundary layer can be derived as 

 fሺxሻ~
hయ

୶యAఱ  (30) 

The thermal boundary layer is distinct if ܴܽ ൐ ݂ሺݔሻ. It is seen 
from (30) that ݂ሺݔሻ decreases monotonically with increasing x. A 
minimum of ݂ሺݔሻ occurs at ݔ ൌ ݄ ⁄ܣ  for a finite domain with 
݂ሺݔሻ௠௜௡ ൌ  ଶ. This minimum value determines two distinctିܣ
flow regimes.  

(i) For ܴܽ ൏ -ଶ, the entire domain is conductionିܣ
dominated and the thermal boundary layer is indistinct at the 
steady state. The scales for the maximum flow velocity and the 
corresponding time have been derived and verified. At the steady 
state, the entire domain becomes stationary and isothermal with a 
temperature determined by the water surface temperature.  

(ii) For ܴܽ ൐  ଶ, the entire flow domain consists of twoିܣ
sub-regions: one with a distinct thermal boundary layer, and the 
other with an indistinct thermal boundary layer. For a given Ra, 
the dividing position between the two sub-regions can be 
obtained from (30) as 

 x଴~hሺRaAହሻିଵ/ଷ (31) 

The thickness of the thermal boundary layer at the corresponding 
location is thus obtained as 

 δୢ~Ax଴~hRaିଵ/ଷAିଶ/ଷ (32) 

The steady-state temperature contours for the flow regime of 
ܴܽ ൐  ଶ at two different Rayleigh numbers are shown inିܣ
figures 4(a) and (b), in which distinct thermal boundary layers 
can be identified. It is clear by comparing these two figures that 
as the Rayleigh number increases, the thickness of the steady-
state thermal boundary layer decreases. The thermal boundary 
layer thickness obtained for different Rayleigh numbers from the 
numerical simulations is plotted against the scaling prediction 
(32) in figure 4(c). The good linear correlation shown in this 
figure confirms the scaling prediction.  
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Figure 4. Distinct thermal boundary layer in the convective region. 
Temperature contours for (a) Ra = 3×106; (b) Ra = 2×107; (c) Thermal 
boundary layer thickness from simulations versus scaling. 
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Figure 5. (a) Time series of the maximum velocity along the vertical line 
at different offshore distances for Ra = 106. (b) Time series of the 
maximum velocity normalized by the steady state scaling. 

 
The time series of the maximum horizontal velocity over the 

local water depth obtained from numerical simulations at 
different offshore distances are plotted in figure 5(a). It is seen in 
this figure that, for regions near shore (e.g. x = 1.0, 1.3), the 
velocity first increases with time, and after reaching a maximum 
value, it decreases to zero, confirming that the flow becomes 
stationary at the steady state in the conduction dominated region. 
For the region further offshore (e.g. x = 4.0, 4.5, 5.0, 5.5), the 
velocity first increases with time and then remains constant at the 
steady state, indicating that convection is strong enough to 
balance conduction and therefore a steady flow velocity is 
maintained. 

In figure 5(b), the time series of the maximum velocity 
extracted from the offshore regions are replotted after 
normalisation by the corresponding velocity and steady-state time 
scales. It is evident that the different time series of the maximum 
velocity in the regions with distinct thermal boundary layers 
converge together, confirming the dependence of the scaling 
predictions on the offshore distance.  

Conclusions 

Natural convection in a wedge-shaped domain subject to 
isothermal heating at the water surface is investigated through 
coupled analytical solution, scaling analysis and numerical 
simulation. The present study reveals two distinct sub-regions, a 

conductive region with an indistinct thermal boundary layer and a 
convective region with a distinct thermal boundary layer.  

For the conductive region, theoretical analysis reveals that at 
any local position the flow reaches its maximum velocity when 
the thermal boundary layer reaches the local depth. Afterwards, 
the flow gradually becomes isothermal and stationary as time 
goes on. The scale of this maximum velocity and the 
corresponding time for its occurrence are well verified by the 
numerical simulations. In the offshore region where convection is 
strong enough to balance conduction, a steady state is reached 
with a distinct thermal boundary layer. The steady state scales for 
the convective region are derived and verified.   
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