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Abstract 

This paper outlines a generalised boundary solution method for 

solving flow at boundaries of 1D duct models.  It is adaptable to 

duct-duct connections and duct-volume connections with 

subsonic, choked and supersonic flows.  It is fully non-

homentropic (accounting for friction, and temperature and 

property variations).  The generalised approach aids in reducing 

code complexity for the approximately 30 distinct flow types that 

can exist at the boundaries of 1D ducts. 

Assumptions are described and numerical methods outlined. The 

solution requires solution of a number of non-linear simultaneous 

equations which is accomplished with the Newton-Raphson 

method.  Sample results for a converging flow compared to 

experimental date are given.   

Introduction  

One dimensional gas dynamics modeling is an important tool in 

modern reciprocating internal combustion engine design.  

Despite a long history and the feeling by some that it is time to 

close the book on this field (see forward to [14]) high quality 

work continues to be reported in the literature eg [6, 12, 13].  

Moreover, there remains an incredible variety of methods and 

codes in use in engine research laboratories around the world that 

reflect the particular historical needs and emphases of each 

research group, and the pedigree of its gas dynamics code, 

whether it be a Method of Characteristics (MOC) based 

formulation [1], other wave action method [4], or a finite 

difference based formulation [14].  Much of the current work 

reported in literature relates to improving boundary or junction 

models.  Accuracy in modelling boundaries is critical in engine 

modelling, since there are numerous duct boundaries that trace 

the path from air inlet through the combustion cylinder to exhaust 

outlet.  Also, new opportunities in detailed CFD present new 

challenges in interfacing.  Boundary formulations are typically 

based on wave action concepts (even finite difference codes).  

Thus, work reported in this area has relevance for all 1D gas 

dynamics codes. 

This paper and its companion [9] report the salient features of 

another 1D gas dynamics code which is based the method 

developed at Queens University, Belfast in the 1990’s eg. [2, 3, 

11].  It is an attempt to simplify gas dynamic calculations and 

maintain or improve accuracy.  In the model, each computational 

cell is treated as an idealised constant-area, constant-property, 

frictionless duct, so that simple algebraic expression are 

sufficient to describe the passage of finite amplitude waves [9].  

Area change, gas property change and friction are accounted for 

at the interfaces between cells.  Connection at duct ends is treated 

in exactly the same way.  Thus the model uses a uniform 

theoretical treatment of boundaries throughout. 

The boundary solution algorithm summarised here was 

developed with careful consideration to the accuracy, numerical 

efficiency, and stability of the solution for a wide range of 

possible flow cases. 

Pressure Wave Theory and Nomenclature 

A pressure wave passing a gas particle induces a change in 

velocity in the particle which is given by Earnshaw [7] as 

1 


































1
)1(

2 2

1

0

0
0





 P

Pa
uu

 (1) 

Where u and u0 are the final and initial velocities respectively, P 

and P0 are the final and initial pressures,  is the ratio of specific 

heats and a0 is the speed of sound at the original pressure P0.  

Equation (1) assumes a calorically perfect gas, and isentropic 

compression or expansion process, so the final speed of sound is 

found as: 
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In equation (1) the positive direction of velocity is in the same 

direction as the motion of the pressure wave. 

Earnshaw’s equation can be extended to the general case of 1D 

duct flow where a both a rightward and leftward pressure wave 

superimpose.  The pressure and velocity of the gas in the duct as 

a function of both waves is: 
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Velocity u is positive in the rightward direction.  The variable X 

is shorthand for 
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And the subscripts R and L signify the rightward and leftward 

travelling pressure waves respectively.  Where X appears without 

a subscript, this signifies the superposition pressure – ie the static 

pressure.  Note the reference pressure P0 can be set to an arbitrary 

value, though it should be a similar pressure to that being 

modelled.  It is conventional to set it to atmospheric pressure. 

Figure 1 shows the mesh nodes of a 1D duct plotted in space and 

time.  Right and left travelling waves propagate along the duct 

and intercept the nodes at cell boundaries.  The values of the right 

and left travelling wave can be calculated if the pressure and 

velocity are known by re-arranging equations (3) and (4) as: 
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It is convenient to name the waves according to whether they are 

travelling toward the node (incident) or away (reflected).  This is 

because the flow at a node is established only by the values of the 

incident waves (if the flow is sub-sonic). 

 

Figure 1 Duct cell boundary nodes in space and time 

In general, to allow for varying gas composition and temperature 

within a duct, the gas properties on either side of a node will be 

different (in space and time).  This is illustrated in Figure 2. 

  

Figure 2 Variation of gas properties around a node in space and time. 

The flow area may change from one cell to the next.  This will 

occur between the end cells of two connected ducts of different 

cross section, and it will also occur between cells of a tapered 

duct (since the cell space is assumed to be constant area).  More 

complex area changes are also discussed in the following section. 

Flow Types 

Considering all possible kinds of flow between duct sections 

and/or large volumes, there are about 31 distinct possibilities as 

shown pictorially in Figure 3.  Constant area duct flow is a 

special case of type ~1 where the change in area is zero.  Friction 

or reducing area may cause a choke point such as in type ~2.  A 

sub-sonic diverging flow will typically experience increased 

pressure loss due to flow separation. (~3)  If a diverging flow is 

sonic or super-sonic on the upstream side it will expand further 

unless it is decelerated and compressed by a standing shock. (~4-

6).  A super-sonic flow may pass entirely through a duct section 

(~7) unless it becomes choked, or a shock travelling upstream 

against the flow passes through the section.  In both cases a 

travelling shock on the upstream side first slows the flow to a 

sub-sonic speed before it passes through section (~8-9).  If the 

flow passes a restricted area between two ducts, the flow is in 

two stages. (~10-19).  If a duct is connected to a volume which is 

supplying the flow, the kinetic energy and pressure of the gas in 

the volume is fixed.  The inlet flow is assumed to be sub sonic, 

though the flow may choke. (~20-24)  If the duct is supplying a 

flow to a volume, then the pressure on the downstream side is 

fixed to the volume pressure (~25, ~28) unless the flow has 

choked, in which case the sonic condition fixes the downstream 

pressure, and the flow will expand somewhat as it enters the 

volume (~26, ~27, ~29).  If two volumes are connected directly 

by a short orifice, the flow may be sub-sonic or it may choke 

(~30-31). 

 

Figure 3 Catalogue of all flow types considered.   

Flow is from left to right. 

A correct solution for any one of the cases above is not especially 

difficult - the difficulty lies in managing the complexity in 

providing for so many possibilities.  Increasing complexity runs 

the risk of inadvertent programming error or code maintenance 

problems.  It is beneficial to arrange the different flow types 

according to families and use as much common code as possible. 

Assumptions 

Steady Flow 

The flow at a node (be it a cell or duct boundary) conceptually 

passes through an infinitesimal control volume.  This allows it to 

be solved as a steady state problem since there can be no 

accumulation of mass or energy within the (small) control 

volume.  The flow is quasi-steady.  It is unclear if there is any 

alternative to this approach.  Chalet et al. [5] claim to avoid the 

assumption of steady flow, but are referring instead to the 

application of a tuning ‘governor coefficient’ which is a function 

of flow Mach number and not based on steady flow-bench data.  

The quasi steady assumption remains in place. 

1D Flow 

The flow is assumed to have uniform properties across any given 

cross section.  The flow area may change, thus it is not truly 1D 

but quasi 1D.  Clearly boundary layers, free jets and recirculation 

zones violate the 1D assumption, but experimental validation 

work such as [3, 13] show remarkably faithful simulation results 

notwithstanding.  The influence of detached flow can be 
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modelled by adding extra friction at these locations or by 

including an area coefficient.  These methods are imperfect since 

they tend not to reproduce the experimental data at all operating 

conditions. [8] reports a model for separated flow which attempts 

to account for the recent flow history and its effect on flow 

separation. 

Flow into a Volume 

The pressure of a separated jet entering a large volume is 

assumed to be identical to the volume pressure.  The exception is 

if the jet is sonic or supersonic at the exit, in which case upstream 

conditions determine the exit conditions. 

Calorically Perfect Flow 

Each quasi steady flow is assumed to have constant specific 

heats. Thus the gas is modelled as locally perfect, though specific 

heats are allowed to vary in both space and time.  The calorically 

perfect flow assumption is not a serious impediment for engine 

modeling (since there are relatively low pressure ratios across 

flow restrictions), but may be problematic for high speed or high 

temperature (rapidly reacting) flows such as gas guns. 

Solution Method 

Figure 4 shows a typical single stage flow boundary (type ~1).  

The gas properties (, a0) in the cell spaces are in general 

different to the gas properties of the boundary flow.  

Conceptually, contact surfaces exist immediately adjacent to the 

flow boundary.  The pressure and velocity on either side of the 

flow boundary are usually different.  Unless the flow is 

isentropic, the downstream reference pressure speed of sound a0 

also increases slightly. 

 

Figure 4 A typical flow boundary showing all flow properties.   

Unknown values in bold.  Flow is from left to right. 

Change of Reference Frame. 

A flow boundary (node) is free to move relative to the duct’s 

reference frame.  If the node is moving, the value of the each 

wave must be modified to match the velocity of the nodal 

reference frame: 
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Where Xwave_mod is the modified wave value and Vnode is the 

velocity of the node relative to the wave’s original reference 

frame with positive being in the same direction as the wave’s 

direction of propagation.  cell and a0cell are the cell space gas 

properties in which the wave is travelling.  Thus a wave’s 

effective magnitude is increased by a node moving to meet it, and 

decreased if the node is moving with it. 

Determining Flow Direction 

It is useful to know the direction of the flow before performing 

detailed calculations, and this can be checked by calculating the 

stagnation pressure of the flow on both sides of the boundary.  

The inlet side will be the side with the highest stagnation 

pressure. 
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Solving the Flow 

The solution of the flow shown in Figure 4 is shown to illustrate 

the general procedure.   This flow has five unknowns, namely 

upstream and downstream X and u, and downstream a0.  The flow 

must satisfy the conditions of conservation of energy – equation 

(10) and conservation of mass – equation (11).  Equations (6) 

and (7) relate the incident pressure waves to X and u.  After 

including the effect of the discontinuity in gas properties at the 

contact surface, they become equation (12 a,b).  Finally, if a 

model for friction work is available, the change in a0 from 

upstream to downstream can be written as equation (13) 

Energy equation 1=>2 
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Continuity Equation 1=>2 
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Wave Equation a, b 
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a0 Equation 1=>2 
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These form a system of five non-linear algebraic equations in 

five unknowns which can be solved simultaneously using the 

Newton-Raphson method for simultaneous equations. 

If the flow on the downstream side exceeds the local sonic 

velocity, the downstream wave equation (12b) must be replaced 

with the sonic equation: 
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Initial Guess 

The Newton-Raphson method is generally robust, and fast-

converging, but the process is greatly assisted if the initial guess 

supplied is near the solution.  Moreover, problems occur if the 

flow solution lies outside of the parameters of the chosen flow 

equations (such as a supersonic flow developing at the throat of a 

sub-sonic problem).  It is thus of great importance to do careful 

analysis of the flow before passing it to the final solver.  There is 

a mass of detail in this process covering initial guesses for simple 

straight ducts, to highly restricted two stage flows with possible 

choking, to inflows from stagnant volumes and so on.   

Shocks 

The effect of a standing shock within a diverging section is 

automatically satisfied by the energy, continuity and downstream 

wave equation, but the possibility of a fully supersonic outlet 

must be checked, in which case the downstream wave equation 

must be replaced by the a0 Equation (13). 
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On the other hand, if the upstream flow is supersonic, checks 

must be made to see if the flow will choke, or have a shock 

migrate upstream from the exit.  If the upstream flow becomes 

shocked, a simple correction can be made to the upstream 

incident wave Xia on each iteration of the main Newton-Raphson 

solution.  This works quite effectively, since the value of the 

incident wave changes only slightly when it traverses such a 

shock. 

Sample Results 

Results of experiments by Kirkparick [10] are used to test the 

model for flows with area change.  The results shown in Figure 5 

are for converging flow since flow separation effects are small.  

A single shot apparatus on the left side of a pipe system injects a 

pressure pulse into an 80mm pipe.  The pulse propagates along 

the pipe toward the right and traverses an area change to a 25 mm 

pipe.  The pressure is recorded at a location downstream of the 

area change.  For better accuracy, the measured pressure on the 

upstream side was used to drive the simulation. 

 

 

Figure 5  Single shot experimental pressure compared to simulation 

Discussion and Conclusion 

An overview of a boundary calculation method has been given, 

which rigorously considers flow losses (friction etc) and non-

uniform gas properties.  This method is applied both to duct ends 

and also to cell boundaries within ducts.  Typically four or five 

equations are solved simultaneously for a single stage flow while 

two more equations are added for two stage flow. If the flow can 

be assumed isentropic (frictionless) then equation (13) can be 

eliminated.  Further, uniform gas properties could remove 

another two equations.  However, these special cases are not 

representative of most real flows, so it is considered better to 

solve the full set for general applicability. 

The results of simulation compared to experiment are good for 

the cases tested here.  Unfortunately the original experimental 

data is no longer available, so it was manually extracted from a 

photocopy of the original publication.  Some error may be due to 

this process, since the resolution of the simulation results is 

higher than most of the printed experimental data. 

This generalised approach to boundary flows aids in reducing 

simulation code complexity, while maintaining full rigour for 

ideal gas 1D flow models. 

Nomenclature 
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 a, a0 speed of sound, isentropic reference pressure a 
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u fluid velocity 
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