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Abstract

In this paper, we discuss the use of integrated radial ba-
sis functions as an interpolation tool in the point-collocation,
Galerkin and control-volume schemes for the discretisation of
the Navier-Stokes equations. Accurate solutions for flows at
high Reynolds/Rayleigh numbers are obtained using relatively-
coarse grids.

Introduction

Finding numerical solutions to the Navier-Stokes equations at
high values of the Reynolds/Rayleigh (Re/Ra) number is still a
major challenge in CFD.

Radial basis functions (RBFs) have emerged as a powerful in-
terpolation tool in solving differential equations [1]. Integrated
RBFs (IRBFs) have the ability to avoid the problem of reduced
convergence rate caused by differentiation and to provide ef-
fective ways of incorporating extra information such as mul-
tiple boundary conditions into the discrete system [4, 9, 10].
In this paper, IRBFs are incorporated into several discreti-
sation schemes, namely point collocation, Galerkin and sub-
region collocation/control-volume, to represent the field vari-
ables. We consider a Newtonian fluid and employ the gov-
erning Navier-Stokes equations in the streamfunction formula-
tion and the streamfunction-vorticity formulation. The pressure
does not have to be considered, which results in computational
efficiency and ease of implementation. However, there is the
need to derive boundary conditions for the vorticity variable if
one uses the streamfunction-vorticity formulation, and to im-
plement double boundary conditions if one chooses the stream-
function formulation. Since the structure of a flow is usually
complex, a sufficiently large number of nodes is typically re-
quired for an accurate simulation. Local approximations have
the advantage of low computational cost and they thus appear
to be a preferred option. Only one-dimensional IRBFs (“local”
approximations) employed with Cartesian grids are discussed
here. This discussion is based on our previous works reported
in [2, 3, 5, 6, 7, 8, 11].

The remainder of the paper is organised as follows. Section 2
briefly outlines 1D-IRBFs. In Section 3, three 1D-IRBF-based
discretisation schemes are described. Section 4 presents some
1D-IRBF simulation results at highRe/Ra values. Section 5
concludes the paper.

One-dimensional IRBFs

Consider a functionu(x). The basic idea of the integral RBF
scheme [9, 10] is to decompose apth-order derivative of the
functionu into RBFs
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Unlike conventional differential schemes, the starting point of
the integral scheme can vary in use, depending on the particular
application under consideration. The scheme is said to be of
order p, denoted by 1D-IRBF-p, if the pth-order derivative is
taken as the starting point.
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where the subscript [.] and superscript (.) are used to denote
the order of an 1D-IRBF scheme and the order of a derivative
function, respectively;
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in which dkui/dxk = dku(xi)/dxk and ui = u(xi) with i =
(1,2, · · · ,Nx).

1D-IRBF-based discretisation schemes

A problem domain, which can be regular or irregular, is em-
bedded in a rectangular domain that is then discretised using a
Cartesian grid. The interior points are defined as grid points
inside the problem domain, while the boundary points are gen-
erated by the intersection of the grid lines and the boundary.
Grid nodes outside the problem domain are removed. It can be
seen that this preprocessing is economical.

Consider anx grid line. The system used for the conversion
of the RBF coefficient space into the physical space can be de-
scribed as (
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whereê, whose length can be up top, is a vector representing
extra information (e.g. normal derivative boundary conditions);
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andα̂ defined as before; and̂C the conversion
matrix. It can be seen from (8) that the approximate solutionu
is collocated at the whole set of nodes. Solving (8) forα̂ yields
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They can be rewritten in the form
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Three discretisation schemes, namely point collocation,
Galerkin, and control volume, are considered. For illustration
purposes, consider a differential problem

L(u) = 0, (14)

defined on a rectangular domainΩ, whereL is an elliptic oper-
ator. Assume that the variableu is prescribed on the boundary
of Ω (Dirichlet boundary condition). To find its interior values,
a number of algebraic equations that is equal to a number of
unknowns needs to be generated.

Point collocation scheme

The algebraic equation set is generated by collocating the gov-
erning differential equation at the interior points

L
(
u(xi,y j)

)
= 0, (15)

where 2≤ i ≤ (Nx −1) and 2≤ j ≤ (Ny −1).

Galerkin scheme

The Galerkin weighting process applied to (14) produces the
following results

∫

Ω
ϕiϕ jL(u)dΩ = 0, (16)

where 2≤ i≤ (Nx−1) and 2≤ j ≤ (Ny−1). The above volume
integrals can be evaluated using repeated integrals, for which
Gauss quadrature points are employed along the grid lines.

Control-volume scheme

For each grid point(xi,y j), one can construct a control volume
Ωi, j that is non-overlapping with each other. By means of the
control-volume statement, one has

∫

Ωi, j

L(u) = 0, (17)

where 2≤ i ≤ (Nx −1) and 2≤ j ≤ (Ny −1). The Gauss diver-
gence theorem can be applied to (17) to transform the volume
integral into surface integrals.

1D-IRBFs are incorporated into (15), (16) and (17) to represent
the field variables on each grid line.

Numerical results

The Navier-Stokes equations are taken in the streamfunction
formulation and the streamfunction-vorticity formulation. We
employ 1D-IRBF-4s and 1D-IRBF-2s with the multiquadric
(MQ) basis function for the discretisation of the streamfunc-
tion and the streamfunction-vorticity formulations, respectively.
The grid size is chosen as the MQ width. The set of nodal
points is taken as the set of MQ centres. The extra informa-
tion vector ê in (8) is set (i) to null in solving the PDEs, (ii)
to derivative boundary values of the streamfunction in deriving
computational boundary conditions for the vorticity, and (iii)
to derivative boundary values in imposing Neumann and dou-
ble boundary conditions. The performance of 1D-IRBF-based
discretisation schemes is numerically investigated through the
steady-state solution of the following three problems.

Example 1: Natural convection heat transfer from a heated in-
ner circular cylinder to a cooled square closure, streamfunction
formulation, point collocation scheme (Table 1 and Figure 1)
Example 2: Natural convection in a square cavity,



streamfunction-vorticity formulation, Galerkin scheme (Table
2 and Figure 2)
Example 3: Lid-driven cavity flow, streamfunction-vorticity
formulation, control-volume scheme (Figure 3)

Table 1: Example 1: the average Nusselt number.
Ra 104 105 106

Present 3.22 4.90 8.72
[12] 3.24 4.86 8.90

Table 2: Example 2: the average Nusselt number throughout the
cavity (Nu) and on the middle cross section (Nu1/2).

Nu Nu1/2
Present 30.548 30.525

[13] 30.225 30.225

The obtained results agree very well with the benchmark solu-
tions available in the literature.

Concluding remarks

In this paper, trial functions are implemented using 1D-IRBFs
rather than the usual low-order polynomials for the solution
of the streamfunction and the streamfunction-vorticity formu-
lations. Attractive features of 1D-IRBFs include (i) to pro-
vide effective treatments of irregular boundary geometries for
Cartesian-grid collocation methods, (ii) to offer a proper way
of implementing Neumann and double boundary conditions
(through integration constants) and (iii) to provide an effec-
tive way of deriving a boundary condition for the vorticity
(through integration constants). Numerical examples show that
1D-IRBF-based discretisation schemes are able to achieve ac-
curate simulations at highRe/Ra values.
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