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Abstract 

An approach to characterise jets by analysis of the locations of 

large-scale features identified in images of the instantaneous flow 

field is presented. A frequency domain is generated from the 

correlations of identified large-scale features in ensembles of 

instantaneous planar images. The frequency-domain correlation 

image provides a measure of the underlying large-scale features; 

namely the characteristic distances and angles between large-

scale features, number densities of large-scale features in the 

image field, variations in distance between large-scale features 

and their dominant mode. The approach is assessed analytically 

and applied to experimental data. Results show that the proposed 

method can be used successfully to characterise the large-scale 

features of jet flows.  

Introduction  

Mixing of fuel and air is commonly achieved using turbulent jets. 

These mixing processes are complex, comprising both large- and 

small-scale turbulent features that control the instantaneous 

distribution of fuel and air. These features have a controlling 

influence on many aspects of combustion, such as heat release 

and pollutant formation. It is therefore necessary to classify the 

structure of instantaneous jet flows. Jets are generally classified 

by the characteristic parameters of half-width rates of centreline 

decay and the higher order statistics along the axis. However, 

these parameters are derived from single point measurements and 

provide little information of the instantaneous flow structure. The 

advent of a range of planar measurement techniques opens the 

door to a range of methods, but there remains a need for other 

processing methods to better resolve underlying structure. The 

aim of the current paper is to present a technique to characterised 

jets based on the correlations of instantaneous large-scale 

features identified in planar images.  

Compared with homogeneously distributed flows, the formation 

of rich and / or lean fuel regions can significantly influence 

thermal and chemical properties, such as ignition temperatures, 

heat transfer and emissions productions [1,5,9,10]. Control of the 

structure of instantaneous fuel distribution offers a means to 

reduce the production of harmful pollutant emissions and 

improve heat transfer. Therefore, statistical analysis of the 

formation of structures from different nozzle designs may enable 

further optimisation of combustion systems.  

Information about the coherence of structures requires an 

ensemble of data. For the current work, planar instantaneous 

images are considered. (By using planar images it is noted that 

only planar slices of structures are identified. These are termed 

large-scale features.) The specific information desired relates to 

the spatial distribution of the large-scale features in a time- or 

ensemble-resolved sense. This information enables greater 

understand of flows in order to address questions such as, is there 

some general pattern in the vortices shed within a turbulent jet or 

some pattern in the formation of particle clusters? 

In the current paper a method to characterise the coherence of 

large-scale features found in an ensemble of planar scalar images 

is proposed. Such images may be of large-scale features 

identified from fluid concentration, (eg from Planar Laser 

Induced Fluorescence, PLIF), particle concentrations (eg from 

planar nephelometry), or vorticies (eg from Particle Image 

Velocimetry, PIV). The requirement is that large-scale features 

must be resolved from instantaneous planar imaging. 

Identification of large-scale features from concentrations can be 

conducted by methods including simple thresholding [11,12] to 

more advanced methods based on a variance from the mean [3,4].  

The current paper presents a method based on the correlation of 

the large-scale features in images from an ensemble. Auto-

correlation and cross-correlation [2,8] use the Fourier 

transformation to turn a spatial coordinate system (the 2D image) 

into a 2D frequency space, and the separation of peaks in the 

frequency space is related to the most common spatial separation 

over the entire ensemble. For example, PIV [2] uses the Fourier 

transform to turn an image of particle distributions into a 

correlation space corresponding to particle displacements, and 

the displacement can be used to infer velocity of the particles 

when the time delay is known. However, to the authors’ 

knowledge, no previous method has been reported that applies 

auto-correlations on large-scale flow features identified from 

instantaneous images. The aim of the present paper is to present 

such a method and to assess its effectiveness, using a series of 

theoretical flow features and then using real experimental data 

with a view to characterising the underlying structure of a jet. 

Methodology 

The proposed method uses instantaneous planar images that are 

processed to identifying flow features. These images are 

converted to a binary feature image, in which values are either 

unity within an identified large-scale features, or zero elsewhere. 

A correlation space is then derived from an ensemble of (binary) 

feature images. The total number of images in the ensemble is M 

and j denotes the jth image in the ensemble. In each image, 1  j  

M, there are nj identified structures. 

If the spatial dimension of each image is W  H, then a frequency 

domain image is created four-times this size, i.e. 2W  2H. The 

notation x and y correspond to the coordinates of the spatial 

domain of the feature image and x' and y' correspond to the 

coordinates of the frequency domain of the correlation image. 

The centre of the frequency domain (x'=W, y'=H) corresponds to 

zero displacement. 

The auto-correlation of the spatial ensemble is generated by 

populating the frequency domain with copies of the feature 



images. For each large-scale feature in each image, the entire 

binary feature image is copied into the frequency domain with 

the centroid of the large-scale feature located at the zero-

displacement origin in the correlation space. The centre of the 

frequency domain is then the self-correlation peak. This process 

is repeated for the entire ensemble with the one correlation space. 

The pixel count, S, is equal to the number of overlapping 

structures. Mathematically this can be represented by the 

following equation  



Sx'y'  S
xTyT

1

n j


j1

M

              (1) 

where xT and yT are the transposed coordinates of the large-scale 

feature’s centre to the centre of the correlation space image. 

Therefore, the strength of the self-correlation peak will equal the 

total number of large-scale features in the entire ensemble, nTOT. 



nT OT  n j
j1

M

   

      

(2) 

Scattered around the self-correlation peak will be a number of 

secondary peaks corresponding to other typical displacements. In 

a randomly distributed ensemble, without any coherence, there 

will be no distinct secondary peaks. In an idealised flow, where 

the spacing and shapes of the large-scale features are constant, 

the strength (magnitude) of the secondary peaks will approach 

the strength of the auto-correlation peak. In addition, if the 

structure shapes are symmetric about two axes, the frequency 

space will be rotationally symmetrical around the origin of the 

frequency domain. This is because any correlation from the 

centre of structure A to B will have an opposite correlation of 

equal strength from B to A. 

 

 

Figure 1. Schematic diagram of the correlation process for a sample 
image with four features (star, square, circle and triangle). Part a) shows 

the instantaneous image from an ensemble, part b) the correlation step for 

the first feature, part c) the correlation of the first image. The colour used 
in part c) highlights the steps. 

Figure 1 illustrates the process schematically. In this example 

there are only three images in the ensemble (M = 3) and only the 

first image (j = 1) is considered. In the first image there are four 

features (nj = n1 = 4): the first feature (i = 1) is taken as the star 

shape. 

The centre of the first feature (star) is located at the centre of the 

correlation space. The remaining structures are located on the 

correlation space relative to the star as they are in the 

instantaneous image (figure 1b). This process is repeated for all 

features in the image and then all images in the ensemble. For the 

example shown, only the first image is used. Colours are used to 

differentiate the correlations for each image, and not image pixel 

count. 

In this example, it can be seen that there isn’t perfect rotational 

symmetry due to the various shapes of the features. However, on 

analysis it can be seen that there is rotational symmetry relative 

to the features’ centroids. 

Analytical Results 

To evaluate the proposed method, four different idealised 

examples of flow modes are considered. These modes are termed 

Axial, Ring, Helical and Random, based on the distribution of the 

2-D slices through the features. Instantaneous images of the 

idealised features are shown in figure 2. These are idealised to 

provide a constant separation distance between features with the 

exception of the Random case which has random separations. 

The corresponding correlations for each case are also shown in 

figure 2. In these examples the flow is directed vertically. Only 

one instantaneous image from the ensembles is shown. 

 

Figure 2. Instantaneous images and correlations of idealised examples of 

round features with constant separation distance.  

From the spacing between the correlation peaks it can be seen 

that the Axial mode has higher order peaks above and below the 

correlation space image centre. Not surprisingly, the pattern of 

the correlation peaks is linear in the vertical direction, which 

corresponds to the direction of flow. Characteristic separation 

distances can be determined from the distance between the centre 

of the correlation peaks and the primary peak. As this example 

has constant separation distance between features, the separation 

distance between the correlation peaks is constant.  

The correlation of the Ring mode exhibits a clear matrix of rows 

and columns with characteristic vertical and horizontal separation 

distances. Based on flow direction, horizontal spacing relates to 

the horizontal separation distance between pairs of features, 

while the vertical spacing relates to the frequency of features 

formation. 

The Helical mode results in a uniform pattern of a truncated 

matrix aligned at 45. Unlike the Ring mode, there is no 

secondary peak in the same horizontal plane as the image centre. 

This is a key difference between Helical and Ring flows. The 



distance from the centre of the correlation space to the closest 

four peaks is the same, as are their angles in each quadrant. 

As expected, the correlation pattern for the Random mode is 

random. There is no characteristic spacing; however, information 

regarding the minimum separation distance between features can 

be inferred from the area free of correlation “peaks” around the 

centre of the correlation space. 

 

Figure 3. Instantaneous images and correlations of idealised examples of 

round structure with variations in separation distance. 

It is unlikely that real jet flows will have constant separation 

distance between successive instantaneous large-scale features. 

Hence the effect of circular shapes without exact separation is 

assessed. Figure 3 shows four instantaneous images and 

corresponding correlation images for the four types of modes.  

Strong similarities can be seen in the correlations from figures 2 

and 3 for each of the Simple, Ring and Helical modes. The 

rotational symmetry of the frequency domain is still evident and 

the characteristics separation distances and angles can still be 

determined. There is obviously no difference in the Random 

modes of figures 2 and 3. 

Next we assess the influence of non-circular and dissimilar shape 

as well as variation in spacing. Figure 4 shows examples of the 

same four flow modes, but with variations to the shapes of the 

features. The same separation distances presented in the 

examples of figure 3 are used and the ensemble size is still four 

images, although only one instantaneous image for each flow 

case is presented. Again, strong similarities in the correlation 

images of figures 2 and 4 are apparent. Correlation peaks can 

again be identified and separation distances and angles between 

peaks can be calculated. However, the peaks are not as clear or 

distinct as in figure 2 or figure 3. This may result in less 

confidence in results, although the peaks can be expected to 

become clearer with a larger ensemble. It is also noted that the 

correlation peaks are no longer rotationally symmetric about the 

image centre, although there is still symmetry of the feature 

centroids.  

 

Figure 4. Instantaneous images and correlations of non-circular and dis-

similar shapes also with variations in separation distances. 

It can be seen from figure 4 that an increase in variability results 

in a broader central correlation peak that may obscure the weaker 

side peaks. To avoid this potential problem, the self-correlation 

peak at the centre of image is excluded from the analysis and 

only the location of the centroid is marked. This is shown 

schematically in figure 5. Horizontal and vertical separation 

distances are labelled LH and LV respectively. It is clear that the 

schematic analysis can be applied to the correlation images in 

figures 2, 3 and 4.  

 

Figure 5. Schematic analysis of the correlation spaces from Simple, 
Paired, and Helical flows. 

Experimental Results 

Experimental data have been used to assess the application of the 

proposed method. These data are images of the particle 

distributions in the first 13 nozzle diameters of particle-laden jets 

from two different nozzles: one with swirl air injection and the 

other with radial air injection. Other than the angle of injection 

(45° for the swirl flow and 0° for the radial flow) all other initial 

conditions for the two flows are identical. The particle 

distributions were imaged using planar nephelometry with 

corrections for attenuation [6,7]. A smoothing length scale of half 

the nozzle diameter has been used to identify structures of 

particle clusters in each image [3,4]. The ensemble size is 131 

images for the swirl flow and 186 images for the radial flow. 

Figure 5 shows the correlation contours for the clusters identified 

from the jets with swirl and radial injection. The self-correlation 

peak has been removed for ease of analysis. Contour lines have 



been applied at increments of 20% of the maximum pixel count 

(excluding the self-correlation peak), with an additional contour 

line at 90% maximum peak count. 

Clear features are evident. For the case of swirl injection, two 

secondary peaks are detected, at x’/D   2.1, i.e. above and 

below the image centre. Two other peaks are found below the 

nozzle at x’/D  -1.8 approximately 35 from the image centre, 

as well as at x’/D  1.8 and approximately 35 from the 

centreline (i.e. above and to the left of the image centre). 

Furthermore, there are distinct regions to either side of the image 

centre with lower pixel intensity. This indicates that the clusters 

are not paired as expected in Ring mode, but rather distributed in 

a helical fashion. As the secondary peaks below the image centre 

are more distinct than those above, the helical nature of the 

distribution of clusters must be stronger further downstream. 

These results indicate that the swirl flow has a helical mode with 

a characteristic separation distance between clusters of 

approximately two diameters and an angle of 35 in this region 

of the flow. The pixel count of the central pixel is 1727, therefore 

there are 1727 clusters in 131 images; an average, 13.2 clusters 

per image. 

Figure 5. Correlation space from jet flow with swirl injection (left) and 

radial injection (right). 

The flow with radial injection has a narrower distribution than for 

swirl. The secondary peaks are approximately three nozzle-

diameters above and below the image centre. Again, it can be 

seen that the regions on to the left and right of the image centre 

have a much lower correlation than those above and below. 

These results indicate that the radial flow has an Axial mode with 

characteristics separation distance of x’/D  3. The pixel count of 

the central pixel is 1564, thus for an ensemble of 186 images, 

there is an average of 8.4 clusters per image. 

The results for flows with swirl and radial injection are consistent 

with expectations. Swirling flows, as expected, shows a Helical 

mode, while radial injection to a simple jet produces an Axial 

mode. Importantly, the separation distance between clusters is 

smaller for flows with swirl injection than for those with radial 

injection. Furthermore, swirl injection results in the formation of 

60% more clusters than for radial injection. 

Conclusions 

A method has been developed to characterise jets based on the 

correlations of instantaneous large-scale features identified from 

planar images. It uses a correlation about the centroid of each 

identified large-scale feature with the remaining features in each 

instantaneous image. Four generic flow cases are assessed to 

provide analytical solutions. Data from two experimental cases 

are also assessed. The results show that the analytical solutions 

are applicable to experimental results. The results provide an 

indication of the characteristic separation distances and angles 

between features, the number density of features and the typical 

distribution of features in the flow. These characteristics are 

important to understanding and optimising combustion, as well as 

other fundamental and applied studies. 

An advantage of the proposed method is that it can be used to 

identify patterns that are not clearly evident from simple visual 

inspection of instantaneous images. This is because the 

underlying features exhibit considerable instantaneous 

variability. Furthermore, a single correlation image can be used 

to assess the characteristic separation distances between features 

and enable estimates the structure formation frequencies.  
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