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Abstract 

An easy-to-interpret local vortex intensity (i.e. near a point) is 
introduced and employed in 3D vortex identification. It is based 
on the maximum corotation of line segments found within a set 
of planar cross-sections going through the given point. The 
results obtained at higher thresholds for different vortical flows 
are promising. The proposed kinematic method remains 
applicable to compressible and variable-density flows. 

Introduction  

The need for efficient 3D vortex-identification schemes has 
become particularly important for the analysis of transitional and 
turbulent flows during last three decades. A variety of vortex 
definitions, vortex-identification methods, and vortex-core 
visualization techniques have been proposed, but none has been 
universally accepted as each has its own limitations. 

Local corotation of line segments near a point is closely 
associated with the interpretation of the residual vorticity in 2D, 
see [8, 9] where different parts of vorticity characterize different 
parts of local motion: shear vorticity—shearing motion, residual 
vorticity—rigid-body rotation. The planar residual vorticity is 
just (double) the least-absolute-value angular velocity of all line 
segments within the flow plane going through the given point. 
This quantity is nonzero if all of the line segments corotate. In the 
present paper, the notion of local corotation is formulated for an 
arbitrary planar cross-section going through the given point in a 
3D flow and it is quantitatively expressed in terms of the 
quasiplanar residual vorticity. It should be emphasized that to 
focus on planar aspects in 3D vortex identification is nothing 
new. For example, in [11] the second invariant Q2D of a planar 
cross-section is applied. 

The local intensity of a vortex (to be determined point by point) 
is sought as the maximum value of planar corotation over all 
planes going through the given point. Note that, contrary to the 
method proposed in [8], the strong coupling of the sought 
swirling motion with the motion in all other directions and planes 
is released. Consequently, in 3D, this method represents a 
computationally simpler algorithm than that of [8], though in 
planar flows both kinematic methods coincide. Two different 
flow situations—a hairpin vortex of boundary-layer transition [1] 
and the reconnection process of two Burgers vortices—are 
analyzed in terms of the local corotation. DNS data sets for this 
purpose have been provided by IAG Stuttgart. Time-consuming 
calculations of the maximum value of planar corotation over all 
possible planes at each mesh point have been considerably 
accelerated by means of GPU computing using NVIDIA CUDA. 
It will be shown that, at higher thresholds, the agreement of the 
present corotation method with the λ2-method is very good. 

Local Corotation of Line Segments 

In 2D, there is a straightforward interpretation of the residual 
vorticity in terms of the least-absolute-value angular velocity of 
all line segments within the flow plane going through the given 
point. If all of the line segments corotate, the residual vorticity is 
nonzero: either positive or negative. The residual vorticity 
represents a direct corotation measure. Analogously, the notion 
of local corotation can be introduced for an arbitrary planar 
cross-section going through the given point in a 3D flow. 

To quantify the local corotation in a 3D flow, the quasiplanar 
residual vorticity, , is employed. Again, it is interpreted in 
terms of the least-absolute-value angular velocity of all line 
segments, however, now within an arbitrary planar cross-section 
going through the given point. The relevant quantities necessary 
for the determination of  are: (i) the vorticity component 
normal to the given planar cross-section ω and (ii) quasiplanar 
deviatoric strain-rate magnitude . 
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The quantities ω, , and  are unambiguously expressed 
in terms of angular velocities near a point depicted in figure 1 
and read (cf. planar expressions from [8], the symbol  stands 
for the shear vorticity, the cross-section coordinates and velocity 
components are denoted x, y and u, v, respectively) 
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In terms of angular velocities, the quantity  can be for (and 

only for) the corotation case, 
Ds

Ds>ω , expressed and viewed as 
(figure 1) 

( ) 2ΩΩ LOWHIGHD /−=s .   (5) 

In figure 1, the term contrarotation, unlike counterrotation, 
indicates that rotating line segments share a common axis of 
rotation (going through the given point P). 
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Figure 1. Interpretation of the residual vorticity in terms of the least-absolute-value angular velocity. 

Alternatively,  can be for (and only for) the contrarotation 

case, 
Ds

Ds<ω , expressed as (cf. figure 1) 

( 2ΩΩ LOWHIGHD /+=s ) ,   (6) 

or, alternatively, for Ds=ω  describing pure shear,  is 
given by 

Ds
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As can be inferred from (3) and (4), a 3D uniform dilatation 
(volumetric deformation) does not affect both the above stated 
quasiplanar shape and rotational characteristics. However, the 3D 
shape changes near a point generally affect the quasiplanar 
deformation appearing in the cross-section and hence the 
calculation of  and, consequently, the calculation of . Ds RESω

Vortex Identification 

From the physical viewpoint, the application of the introduced 
corotation property to vortex identification has a very positive 
aspect. The vortex-identification scheme based on the 
quasiplanar residual vorticity  provides an easy-to-interpret 

local vortex intensity sought in the following manner. It is a 
plausible assumption of the proposed scheme that a vortex is 
locally (near a point) characterized by the maximum value of 
planar corotation over all planes going through the given point. 
The desired plane of swirling maximizes , or equivalently, 

 (for the case of vorticity dominance, see figure 1). It 
should be recalled that the earlier widely used application of 
(total) vorticity to vortex visualization is nothing but a pointwise 
3D search for a vorticity vector which is assumed to be 
perpendicular to the plane of swirling (vortex intensity being 
quantified by the vorticity magnitude). In other words, within the 
earlier (total) vorticity scheme, the plane of swirling maximizes 
an average angular velocity of all line segments, subsets of the 
plane, going through the given point. 
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In practice, though the number of planes to check near a point is 
infinite, the determination of the relevant cross-section should be 
based on a finite set of discrete representations. By considering a 
reasonable angle resolution (for example, one degree or less) we 
proceed to the approximation with reasonably high precision. The 
transformation matrix for an arbitrarily rotated cross-section can 
be obtained by a sequence of two rotational transformations. It 
should be noted that the method introduced in [8] needs three 
rotational transformations and, consequently, the corotation 



method represents a computationally simpler algorithm than that 
of [8]. Therefore, contrary to the method proposed in [8], the 
strong coupling of the sought swirling motion with the motion in 
all other directions and planes is released. 

There is nothing new to focus on planar aspects in 3D vortex 
identification as shown, for example, in [11] where the second 
invariant Q2D of a planar cross-section is employed (Q2D-
criterion). An analytical diagnosis of four popular local criteria, 
demonstrated by the Burgers and Sullivan vortex, indicates 
that—unlike the Δ-criterion [3]—the Q-criterion [5] and λ2-
criterion [6] may cut a connected vortex into broken segments at 
locations with strong axial stretching [11]. Similar to the vortex 
predicted by the Δ-criterion [3], the corotation-based vortex is 
resistant to strong axial stretching. However, the corotation 
criterion employed here as the region-type vortex-identification 
scheme fails at low threshold levels. The physical reason is as 
follows: with the exception of a few cases (especially purely 2D 
cases where strain-rate dominates over vorticity), there is always 
a plane of nonzero corotation with elliptical streamlines near a 
point. Simply said, for low thresholds there is a tendency of the 
corotation-based vortex identification to cover almost the entire 
examined region. The situation is similar for the Q2D-criterion 
[11], used earlier in [7] as the swirl condition alongside the 
sectional-pressure-minimum condition. Also note that practical 
applications of the most popular criteria employ a nonzero 
threshold. The vortex surface with a positive threshold appears 
significantly smoother [12]. Moreover, the study of the 
relationship between local identification schemes [2] shows that 
all of the popular local criteria, given the proposed usage of 
threshold, result in a remarkable vortex similarity. 

As mentioned in [11], owing to their universality, kinematic 
criteria are preferred if they work well. The kinematic Δ-criterion 
[3] and λci-criterion [2, 12] are easily extendable to compressible 
flows [10] unlike some other vortex-identification schemes. The 
widely used λ2-method [6], although it employs the eigenvalues 
of the kinematic quantity  (22 ΩS + ΩSu +=∇ ), is formulated 

on dynamic considerations (namely on the search for a pressure 
minimum across the vortex by the requirement of two positive 
eigenvalues of the pressure Hessian). Consequently, this criterion 
is not extendable to compressible flows due to nonzero 
divergence and nonzero density gradients [4]. The kinematic 
methods based on vorticity decomposition and local corotation 
(the present case) clearly remain applicable to compressible and 
variable-density flows. 

Data Processing Method 

The value of planar corotation in terms of the quasiplanar 
residual vorticity  is maximized over all admissible planes 
individually at each mesh point. This leads to a large set of 
independent optimization problems. Two design variables are 
represented by angular rotations of the plane. The design space is 
uniformly sampled with a chosen step size of these angles. While 
smaller angle step size improves the resolution of the search, it 
can lead to large number of objective function evaluations, which 
depends on angle step size Δα as 1/(Δα)
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2. However, according to 
our experience with the method, fine resolution often improves 
the quality of the identification considerably, and a step size of 
one degree was chosen for the present calculations. This choice 
leads to 32761 objective function evaluations at each mesh point. 

Since the optimization problems are completely independent, and 
the application has a large ratio of arithmetic operations and 
memory transfers (such problems are sometimes called arithmetic 
intensive), it is a good candidate for parallel computing. For its 
simple accessibility, we have chosen the CUDA platform by 
NVIDIA to accelerate the computation by a Graphical Processing 
Unit (GPU). This platform allows simultaneous optimization at 
multiple mesh points using multiple cores of GPUs, that are 
present in common personal computers as well as in special 
computing servers of GPUs. Using this technique, we have been 
able to reduce the overall computational time for evaluation of 
the maximum  at a point to times comparable to file 
input/output operations with the data. 
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Figure 2. Reconnection process of two Burgers vortices: λ2-method (left), present corotation method (right). 



 
Figure 3. A hairpin vortex of boundary-layer transition: λ2-method (left), present corotation method (right). 

 

Results 

Two types of vortices (figures 2, 3) are analyzed in terms of the 
maximum  at a point. While the boundary-layer transition 
[1] required the threshold of about 16.7% of λ

RESω
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to capture well what λ2-criterion predicts for a hairpin vortex 
(figure 3), for Burgers vortices (Ma=0.3) the threshold was set 
much lower, at about 3.9% of λ2 maximum value, to capture the 
identification outcome of λ2-criterion (figure 2) quite well. 

 
Figure 4. Residual vorticity vs. angle step size. 

For the case of Burgers vortices it is shown in figure 4 how the 
angle step size (1, 2, 5, 10, 30, 45, 90 deg) affects the final value 
of  at the fixed point corresponding to the position of the 
global maximum for the finest one-degree resolution. There is no 
significant difference in the value of  up to more than 10 
deg. For more than 30 deg the global maximum moves from the 
original position obtained for one-degree resolution. For the 
range from 1 to 10 deg the processing time (by NVIDIA CUDA) 
reasonably ranges from tens of seconds to several minutes. 
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Conclusions 

An easy-to-interpret local vortex intensity is introduced and 
applied to the identification of vortical structures. The vortex 
intensity is locally (near a point) characterized by the maximum 
value of planar corotation over all planar cross-sections going 
through the given point. The corotation measure for an arbitrary 
planar cross-section is quantified by the quasiplanar residual 
vorticity  which has to do with the rigid-body rotation after 

RESω  is nothing but the least-absolute-value angular velocity of 
 segments within the examined flow plane going through 

the given point as shown in figure 1. This method clearly remains 
applicable to compressible and variable-density flows. 
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